NEXT-GENERATION THREAT INTELLIGENCE: SECURING GOVERNMENTAL HEALTHCARE NETWORKS AGAINST EVOLVING RISKS

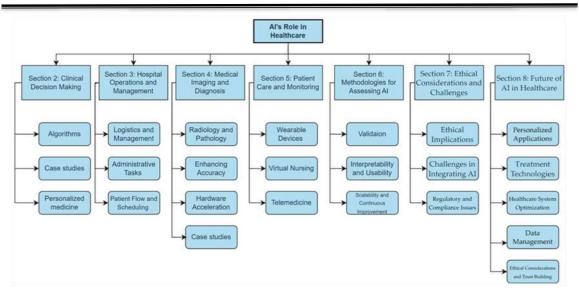
Praveen Kumar Pemmasani¹, Aleksandra²

¹Senior Systems Programmer, City of Dallas, 1500 Marilla St, Dallas, TX 75201

²University of Southern California, USA

ABSTRACT

As global healthcare systems encounter difficulties including rising prices, restricted access, and increasing demand for personalised treatment, artificial intelligence (AI) is emerging as a pivotal agent of transformation. This assessment is driven by the pressing necessity to leverage AI's capabilities to address these challenges and seeks to critically evaluate AI's incorporation across several healthcare sectors. We examine how AI enhances clinical decision-making, streamlines hospital operations and administration, improves medical image processing, and transforms patient care and monitoring via AI-enabled wearables. We examine several case studies to illustrate how AI has revolutionised particular healthcare sectors, while also addressing the persistent difficulties and potential remedies. Furthermore, we will examine approaches for evaluating AI healthcare solutions, the ethical dilemmas associated with AI implementation, and the significance of data protection and bias reduction for the responsible application of technology. This review provides a critical evaluation of AI's transformational potential, enhancing academics' comprehension of AI's present and future effects on healthcare. It promotes multidisciplinary discourse among academics, physicians, and engineers to address the intricacies of AI deployment, facilitating the creation of AI-driven solutions that emphasise ethical norms, equity, and a patient-centered methodology.


KEYWORDS: Threat Intelligence, Healthcare Cybersecurity, Evolving Cyber Threats, Real-Time Threat Detection, Government IT Security

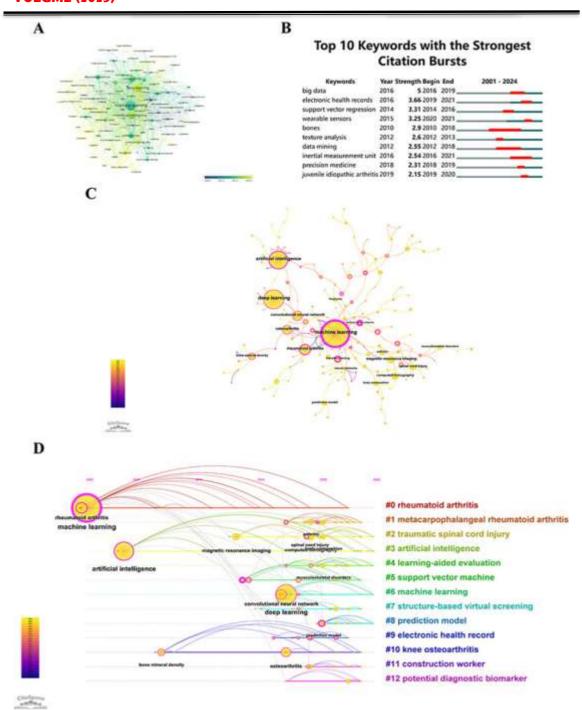
INTRODUCTION

In recent years, artificial intelligence (AI) has emerged as a revolutionary force across several industries, particularly in healthcare. The incorporation of AI into hospitals and clinics signifies a fundamental transformation in the delivery and management of medical care. This study intends to examine the diverse function of AI in healthcare environments, emphasising its influence on clinical decision-making, hospital operations, medical diagnostics, patient care, and the ethical implications it presents. The notion of artificial intelligence in healthcare is not novel; it originates from the

initial phases of computer science when researchers initially conceptualised robots that might replicate human intellect [1-11]. Nonetheless, it was only with the progress of machine learning algorithms and the significant rise in processing power and data accessibility that AI applications in healthcare began to thrive. This progress has been characterised by notable milestones, ranging from primitive expert systems to sophisticated neural networks that can surpass human experts in particular tasks. Currently, artificial intelligence in healthcare includes a wide array of applications. In clinical environments, it aids in illness diagnosis, forecasting patient outcomes, and customising treatment strategies. In healthcare administration, AI enhances operational efficiency, simplifies administrative processes, and optimises patient flow and scheduling. In medical diagnostics, AI improves the precision and efficiency of image processing in radiology and pathology. Furthermore, AI significantly influences patient care via remote monitoring, telemedicine, and virtual help, fundamentally transforming the patient-doctor interaction paradigm. This study encountered many limitations: Initially, the constraints of CiteSpace necessitated the extraction of papers only from WoSCC, resulting in unavoidable selection bias. Secondly, the citation count, employed as an indicator of a paper's influence, is susceptible to several confounding variables, compromising its precision. Thirdly, the substantial quantity of publications may have undermined the study's credibility by hindering thorough investigation of each paper and subfield. Fourthly, earlier scientometric research indicate that scientometric methodologies significantly depend on natural language processing, potentially introducing bias. Fifthly, limiting the scope to English literature may result in publication bias. Finally, the statistical analysis may not encompass recently released research and specific keywords due to an inadequate collection of literature [12-22].

This study examines the expanding role of artificial intelligence in healthcare, concentrating on its implementation in hospitals and clinics. Given the vast breadth of our study, we adopted a thorough approach to reference selection, concentrating largely on papers published in credible journals during the last five years. We did our search with both Google Scholar and PubMed to ensure a thorough examination of the relevant literature. Figure 1 presents a detailed summary of the principal subjects discussed in this work. We start with artificial intelligence in clinical decision-making, emphasising its use in diagnosis, prognosis, and personalised medicine via particular illness case studies.

Figure 1: Comprehensive overview of AI applications in hospitals and clinics: detailed exploration of key topics addressed in this paper.


The discourse thereafter transitions to the use of AI in enhancing hospital operations and administration, encompassing logistics, administrative functions, and scheduling. Additionally, we investigate the use of AI in medical imaging and diagnostics, where it improves precision and efficacy in radiology and pathology. This study examines the influence of AI on patient care and monitoring, focusing on AI-enabled wearables, virtual nursing assistants, and the proliferation of telemedicine. We also examine approaches for evaluating the efficacy of AI healthcare solutions. Ethical aspects and obstacles associated with AI integration, including privacy, bias, and data security, are examined, followed by an exploration of the future of AI in healthcare, emphasising its potential to enhance patient outcomes and address global health crises [23-34].

AI ALGORITHMS FOR DIAGNOSIS AND PROGNOSIS

To satisfy the increasing needs of musculoskeletal illnesses, artificial intelligence must tackle diagnosis, therapy, and result evaluation. Although AI applications for musculoskeletal illnesses have predominantly concentrated on diagnostics, there is a pressing want for algorithms that assist practitioners in recognising and addressing unfavourable intraoperative outcomes. While several musculoskeletal procedures now require human intervention in conjunction with artificial intelligence, there exists the possibility to augment their autonomy. Integrating AI algorithms in surgical processes can enhance the efficiency and accuracy of less experienced surgeons during difficult operations. In the context of bone neoplasms, a device must accurately identify tumour margins to enable margin-negative (R0) resections. Anticipating the future, the prospect of an AI system that can conduct patient interviews, diagnose ailments, execute testing, and provide findings seems plausible.

With technological advancements, many view the involvement of AI applications in

musculoskeletal illnesses as an unavoidable progression. Substantial funding and initial research have investigated the optimisation of these strategies across several clinical and para-clinical domains. Nonetheless, others contend that the enthusiasm around AI surpasses its present practical applicability. As with other innovative healthcare technologies, where human lives are involved, it is imperative to ensure that AI applications proposed for clinical use are substantiated by evidence-based rationales for adoption, ideally showing outcomes that are at least comparable to, and preferably superior to, traditional standards. AI algorithms have transformed healthcare by improving the precision and efficacy of illness detection and prognosis. These algorithms evaluate extensive medical data, encompassing imaging, laboratory findings, and patient records, to discern trends and generate prediction evaluations [35-46]. Machine learning (ML) and deep learning (DL) models, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have exceptional efficacy in medical imaging, accurately identifying anomalies in X-rays, MRIs, and CT scans. Through the automation of diagnostic procedures, AI diminishes human error, accelerates decision-making, and enhances early illness identification, eventually resulting in improved patient outcomes. In addition to diagnosis, AI is essential for forecasting disease development and patient prognosis. Predictive analytics models utilise previous patient data to anticipate the probability of illness onset, treatment efficacy, and survival rates. AI-driven risk stratification systems may evaluate cancer development using genetic markers and imaging data, facilitating personalised treatment strategies. In cardiology, artificial intelligence algorithms evaluate electrocardiograms (ECGs) and additional physiological data to forecast heart failure or arrhythmias before to the onset of significant symptoms. By delivering early alerts, AI facilitates prompt medical action, hence diminishing problems and hospital admissions. (Figure 2).

Figure 2: Visualization of keyword intensity overlay over time. Each circle and its label constitute a node, where the circle size corresponds positively to the frequency of keyword occurrence.

AI algorithms are revolutionising precision medicine by customising therapies according to unique patient characteristics. Through the integration of genetic data, biomarkers, and clinical history, AI assists doctors in selecting the most efficacious

medicines while reducing adverse effects. AI-driven models in cancer forecast individual patient responses to chemotherapy or immunotherapy, hence enhancing treatment recommendations. Moreover, AI-driven electronic health records (EHRs) improve prognosis by perpetually updating and analysing patient data, therefore providing doctors with real-time insights into illness development and treatment effectiveness. Notwithstanding its benefits, the use of AI in diagnosis and prognosis presents problems, such as data privacy issues, algorithmic biases, and the necessity for regulatory supervision. It is essential to train AI models on broad datasets to mitigate biases and enhance dependability among various patient groups. The incorporation of AI into clinical workflows necessitates collaboration between healthcare practitioners and data scientists to assess and understand AI-generated findings [47-60]. As AI advances, its capacity to augment diagnostic precision and refine prognostic forecasts will propel progress in personalised and predictive healthcare as seen in Table 3.

Table 3: Learner and instructor oriented AIEd

Learner-oriented AIEd	Instructor-oriented AIEd
Intelligent tutoring systems	AI instructional planning and delivery assistant
AI-assisted apps and simulations (maths, language learning, gamification)	AI formative and summative assessment assistant
AI-assisted lifelong learning assistant	Classroom monitoring (including student progress)
Automatic essay writing Chatbots	Learning analytics
Automatic formative assessment	AI personalization and differentiation assistant
Dialogue-based tutoring systems	Classroom orchestration
Exploratory learning environments	Assistance with students with disabilities
AI to support learners with Disabilities	AI-assisted virtual learning environments

2. ARTIFICIAL INTELLIGENCE IN IDENTIFYING DEFICIENCIES IN HEALTHCARE FACILITIES

Artificial intelligence is progressively employed in hospitals and clinics to identify deficiencies in infrastructure, medical apparatus, and operational procedures. Deficiencies in healthcare facilities may include defective medical equipment and inefficiencies in administrative processes, both of which can adversely affect patient safety and the quality of service. AI-driven monitoring systems employ predictive analytics, machine learning (ML), and Internet of Things (IoT) sensors to detect problems prior to their escalation into breakdowns. Through the ongoing analysis of data from hospital systems, AI can identify abnormalities, forecast maintenance requirements, and notify personnel of potential dangers, therefore assuring the continuity of medical services. A significant use of AI in defect detection is the

surveillance of medical equipment performance. Essential apparatuses, including MRI scanners, ventilators, and infusion pumps, necessitate exact operation to guarantee correct diagnoses and appropriate therapies. AI-driven predictive maintenance algorithms examine machine usage patterns, identify performance aberrations, and forecast probable breakdowns prior to their occurrence. This proactive strategy diminishes equipment downtime, lowers maintenance expenses, and averts delays in patient treatment. Hospitals employing AI for equipment monitoring have observed notable enhancements in operational efficiency and patient safety.

AI is essential for detecting deficiencies in hospital infrastructure, encompassing HVAC systems, electricity supply, and water quality monitoring. Malfunctions in these systems can result in detrimental situations, like temperature variations in surgery rooms or pollution of the water supply, hence posing significant dangers to patients and medical personnel. AI-driven smart sensors consistently monitor environmental conditions and identify anomalies, activating automatic warnings for prompt remedial measures. This guarantees that hospitals sustain ideal settings for surgical procedures, intensive care units (ICUs), and pharmaceutical storage. In addition to physical infrastructure, AI aids in identifying deficiencies in hospital administration and workflow management. Inefficiencies, including scheduling problems, delayed patient transfers, and bottlenecks in emergency rooms, can result in congestion and prolonged wait times. AI-powered hospital management systems evaluate patient flow, personnel availability, and resource distribution to detect inefficiencies and provide best remedies. AI boosts hospital efficiency by enhancing coordination and minimising operational disturbances, so ensuring patients receive prompt medical treatment (Figure 4).

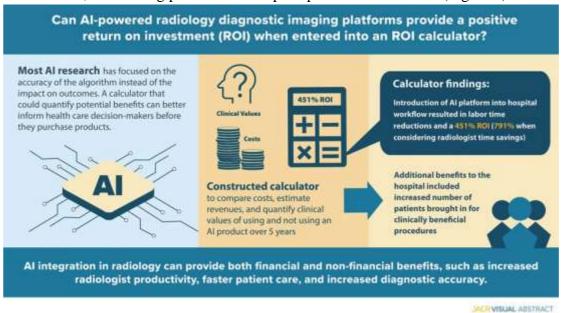


Fig. 4: Data quantification of AI in hospitals and clinics.

Cybersecurity is a vital domain in which AI facilitates defect detection. Healthcare facilities accumulate extensive sensitive patient information, rendering them attractive targets for hackers. AI-driven cybersecurity solutions oversee network traffic, identify anomalous patterns, and avert data breaches by recognising weaknesses inside hospital IT infrastructure. These systems employ machine learning algorithms to identify phishing attempts, ransomware threats, and unauthorised access, therefore safeguarding patient records and guaranteeing compliance with data protection standards. Notwithstanding its benefits, the incorporation of AI in defect detection necessitates meticulous deployment and employee training. AI systems require ongoing updates and validation to maintain precision in fault prediction and reaction. Furthermore, hospitals must confront issues related to data protection and the ethical application of AI in decision-making processes. As AI technology progresses, its significance in defect detection will further enhance healthcare facilities' safety, efficiency, and patient care standards (Bharadwaj et al., 2024).

INVESTMENT IN HOSPITAL ARTIFICIAL INTELLIGENCE

The increasing implementation of AI in healthcare has resulted in substantial expenditures in hospital AI systems to augment patient care, optimise operations, and refine medical decision-making. Healthcare facilities globally are dedicating significant resources to AI technologies that enhance diagnosis, streamline administrative tasks, and elevate treatment results. Investments in AI encompass the procurement of machine learning algorithms for predictive analytics, robots for surgical help, and AI-driven cybersecurity to safeguard patient data. As hospitals encounter mounting pressure to deliver superior care while minimising expenses, investments in AI have emerged as a strategic need. A significant sector of AI investment in hospitals is medical imaging and diagnostics. AI-driven imaging tools aid radiologists in accurately identifying anomalies in X-rays, MRIs, and CT scans. Organisations and medical institutions are allocating resources to AI-based diagnostic instruments that improve early illness identification, especially for ailments like cancer, cardiovascular diseases, and neurological problems. These AI solutions diminish diagnostic inaccuracies, enhance efficiency, and expedite the identification of crucial medical diseases. Ongoing investment in AI diagnostics is anticipated to establish it as a routine instrument in hospitals, aiding physicians in rendering swifter and more precise judgements.

Artificial intelligence is revolutionising hospital workflow management, resulting in heightened investments in AI-driven automation and administrative efficiency. Numerous hospitals are implementing AI-driven scheduling systems that enhance patient appointments, personnel allocation, and resource management. AI chatbots and virtual assistants are being incorporated into hospital contact centres and online platforms to manage patient enquiries, therefore alleviating the burden on healthcare personnel. Investing in these AI technologies enables hospitals to improve operational

efficiency, reduce human mistakes, and facilitate a more seamless patient experience. These improvements enhance hospital efficiency while alleviating administrative demands on healthcare workers. A important domain for investment in hospital AI is robotic-assisted surgery. AI-driven robotic systems, exemplified as the da Vinci Surgical System, offer enhanced accuracy and control in intricate surgical operations, resulting in improved patient outcomes and shortened recovery durations. Hospitals are progressively financing robotic surgical initiatives to improve minimally invasive techniques, especially in cardiology, oncology, and orthopaedics. These AI-enhanced robotic devices allow surgeons to execute intricate procedures with enhanced precision, minimising problems and augmenting success rates. With the increasing acknowledgement of the benefits of AI-driven robotics by hospitals, investments in this technology are anticipated to escalate.

In response to the escalating concerns of cyberattacks and data breaches, hospitals are significantly investing in AI-driven cybersecurity solutions. AI-powered security solutions oversee hospital networks, identify possible cyber threats, and react to security breaches instantaneously. Due to the sensitive nature of patient information and hospital systems, investing in AI-enhanced cybersecurity is essential for adhering to data protection standards and ensuring patient confidentiality. As cyber risks advance, hospitals will persist in investing in AI-driven security solutions to safeguard healthcare data and uphold faith in digital health technology. Notwithstanding the numerous benefits, investing in AI for hospitals necessitates meticulous planning, adherence to regulations, and worker training. AI technology must be smoothly incorporated into current medical infrastructures, prioritising ethical issues and patient safety. Moreover, hospitals are required to educate healthcare workers to collaborate efficiently with AI systems. As AI progresses, sustained investments in research, development, and deployment will be crucial for realising its full promise in transforming medical care. Through deliberate investments in AI technology, hospitals may augment efficiency, boost patient outcomes, and influence the future of contemporary healthcare.

CONCLUSION

This extensive scientometric research delineates the landscape of "AI-MSK diseases" during the previous 24 years. The increase of scholarly papers signifies an escalating interest in this domain, suggesting a favourable future. The global partnership, primarily spearheaded by the USA and the UK, highlights the transnational character and extensive ramifications of this study. Institutions such as the University of California, San Francisco, Harvard Medical School, and Seoul National University have rendered substantial contributions. Prominent individuals including Valentina Pedoia, Sharmila Majumdar, and Ali Guermazi have significantly influenced this developing discipline. Journals such as Scientific Reports, Diagnostics, and Sensors

serve as essential forums for this research. This research recognises limits that offer prospects for more sophisticated studies and approaches. This study offers a thorough examination of "AI-MSK diseases" research, delineating its progression and facilitating future developments. In conclusion, we have presented quantitative proof of the financial and non-financial advantages that AI integration in radiology may produce. The anticipated positive ROI is driven by several factors: first, significant decreases in waiting, triage, reading, and reporting times improve radiologist productivity and accelerate patient care, yielding clinical and operational advantages; second, enhanced diagnostic accuracy and early disease detection result in increased clinical benefits; finally, the value of individual AI applications is amplified through the integration of processes encompassing procurement, installation, and maintenance. The ROI calculator serves as a thorough and evidence-based tool for evaluating the financial feasibility and value proposition of incorporating AI technology into radiology operations.

REFERENCES

- [1] Tulli, S.K.C. (2023) Application of Artificial Intelligence in Pharmaceutical and Biotechnologies: A Systematic Literature Review. International Journal of Acta Informatica. 1: 105-115.
- [2] Tulli, S.K.C. (2023) An Analysis and Framework for Healthcare AI and Analytics Applications. International Journal of Acta Informatica. 1: 43-52.
- [3] Nadimpalli, S. V., & Srinivas, N. (2022a, February 5). Social Engineering penetration testing techniques and tools. https://ijaeti.com/index.php/Journal/article/view/720
- [4] Tulli, S.K.C. (2024) Artificial intelligence, machine learning and deep learning in advanced robotics, a review. International Journal of Acta Informatica. 3(1): 35-58.
- [5] Tulli, S.K.C. (2024) A Literature Review on AI and Its Economic Value to Businesses. The Metascience. 2(4): 52-69.
- [6] Mandaloju, N., Srinivas, N., & Nadimpalli, S. V. (2022). Enhancing Salesforce with Machine Learning: Predictive Analytics for Optimized Workflow Automation. Journal of Advanced Computing Systems, 2(7), 1-14
- [7] Tulli, S.K.C. (2024) Enhancing Software Architecture Recovery: A Fuzzy Clustering Approach. International Journal of Modern Computing. 7(1): 141-153.
- [8] Tulli, S.K.C. (2024) Leveraging Oracle NetSuite to Enhance Supply Chain Optimization in Manufacturing. International Journal of Acta Informatica. 3(1): 59-75.
- [9] Srinivas, N., Mandaloju, N., & Nadimpalli, S. V. (2022). Integrating Machine Learning with Salesforce for Enhanced Predictive Analytics. Journal of Advanced Computing Systems, 2(8), 9-20.
- [10] Tulli, S.K.C. (2024) Motion Planning and Robotics: Simplifying Real-World Challenges for Intelligent Systems. International Journal of Modern Computing. 7(1): 57-71.
- [11] Tulli, S.K.C. (2022) An Evaluation of AI in the Classroom. International Journal of Acta Informatica. 1(1): 41-66.
- [12] Nadimpalli, S. V., & Dandyala, S. S. V. (2023). Automating Security with AI: Leveraging Artificial Intelligence for Real-Time Threat Detection and Response. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 14(1), 798–815
- [13] Tulli, S.K.C. (2023) The Role of Oracle NetSuite WMS in Streamlining Order Fulfillment Processes. International Journal of Acta Informatica. 2(1): 169-195.
- [14] Pasham, S.D. (2023) Enhancing Cancer Management and Drug Discovery with the Use of AI and ML: A Comprehensive Review. International Journal of Modern Computing. 6(1): 27-40.
- [15] Pasham, S.D. (2023) The function of artificial intelligence in healthcare: a systematic literature review. International Journal of Acta Informatica. 1: 32-42.

- [16] Muppalaneni, R., Inaganti, A. C., & Ravichandran, N. (2024). AI-Driven Threat Intelligence: Enhancing Cyber Defense with Machine Learning. Journal of Computing Innovations and Applications, 2(1).
- [17] Pasham, S.D. (2023) An Overview of Medical Artificial Intelligence Research in Artificial Intelligence-Assisted Medicine. International Journal of Social Trends. 1(1): 92-111.
- [18] Sundaramurthy, S. K., Ravichandran, N., Inaganti, A. C., & Muppalaneni, R. (2022). The Future of Enterprise Automation: Integrating AI in Cybersecurity, Cloud Operations, and Workforce Analytics. Artificial Intelligence and Machine Learning Review, 3(2), 1-15.
- [19] Pasham, S.D. (2024) Using Graph Theory to Improve Communication Protocols in AI-Powered IoT Networks. The Metascience. 2(2): 17-48.
- [20] Pasham, S.D. (2024) Scalable Graph-Based Algorithms for Real-Time Analysis of Big Data in Social Networks. The Metascience. 2(1): 92-129.
- [21] Manduva, V.C. (2023) Scalable AI Pipelines in Edge-Cloud Environments: Challenges and Solutions for Big Data Processing. International Journal of Acta Informatica. 2(1): 209-227.
- [22] Sundaramurthy, S. K., Ravichandran, N., Inaganti, A. C., & Muppalaneni, R. (2021). Unifying AI and Automation: A Multi-Domain Approach to Intelligent Enterprise Transformation. Journal of Advanced Computing Systems, 1(11), 1-9
- [23] Manduva, V.C. (2023) The Rise of Platform Products: Strategies for Success in Multi-Sided Markets. The Computertech. 1-27.
- [24] Manduva, V.C. (2023) Unlocking Growth Potential at the Intersection of AI, Robotics, and Synthetic Biology. International Journal of Modern Computing. 6(1): 53-63.
- [25] Inaganti, A. C., Ravichandran, N., Nersu, S. R. K., & Muppalaneni, R. (2021). AI-Augmented Workforce Planning: Leveraging Predictive Analytics for Talent Acquisition and Retention. Artificial Intelligence and Machine Learning Review, 2(1), 10-20.
- [26] Manduva, V.C. (2023) Artificial Intelligence and Electronic Health Records (HER) System. International Journal of Acta Informatica. 1: 116-128.
- [27] Pasham, S.D. (2024) Managing Requirements Volatility in Software Quality Standards: Challenges and Best Practices. International Journal of Modern Computing. 7(1): 123-140.
- [28] Manduva, V.C. (2024) Advancing AI in Edge Computing with Graph Neural Networks for Predictive Analytics. The Metascience. 2(2): 75-102.
- [29] Pasham, S.D. (2024) The Birth and Evolution of Artificial Intelligence: From Dartmouth to Modern Systems. International Journal of Modern Computing. 7(1): 43-56.
- [30] Inaganti, A. C., Ravichandran, N., Nersu, S. R. K., & Muppalaneni, R. (2021). Cloud Security Posture Management (CSPM) with AI: Automating Compliance and Threat Detection. Artificial Intelligence and Machine Learning Review, 2(4), 8-18
- [31] Manduva, V.C. (2024) Integrating Blockchain with Edge AI for Secure Data Sharing in Decentralized Cloud Systems. The Metascience. 2(4): 96-126.
- [32] Inaganti, A. C., Sundaramurthy, S. K., Ravichandran, N., & Muppalaneni, R. (2020). Cross-Functional Intelligence: Leveraging AI for Unified Identity, Service, and Talent Management. Artificial Intelligence and Machine Learning Review, 1(4), 25-36.
- [33] Manduva, V.C. (2024) The Impact of Artificial Intelligence on Project Management Practices. International Journal of Social Trends. 2(3): 54-96.
- [34] Inaganti, A. C., Sundaramurthy, S. K., Ravichandran, N., & Muppalaneni, R. (2020). Zero Trust to Intelligent Workflows: Redefining Enterprise Security and Operations with AI. Artificial Intelligence and Machine Learning Review, 1(4), 12-24
- [35] Manduva, V.C. (2024) The Strategic Evolution of Product Management: Adapting to a Rapidly Changing Market Landscape. International Journal of Social Trends. 2(4): 45-71.
- [36] Manduva, V.C. (2024) Review of P2P Computing System Cooperative Scheduling Mechanisms. International Journal of Modern Computing. 7(1): 154-168.
- [37] Ravichandran, N., Inaganti, A. C., Muppalaneni, R., & Nersu, S. R. K. (2020). AI-Powered Workflow Optimization in IT Service Management: Enhancing Efficiency and Security. Artificial Intelligence and Machine Learning Review, 1(3), 10-26
- [38] Manduva, V.C. (2024) Implications for the Future and Their Present-Day Use of Artificial Intelligence. International Journal of Modern Computing. 7(1): 72-91.

- [39] Ravichandran, N., Inaganti, A. C., Muppalaneni, R., & Nersu, S. R. K. (2020). AI-Driven Self-Healing IT Systems: Automating Incident Detection and Resolution in Cloud Environments. Artificial Intelligence and Machine Learning Review, 1(4), 1-11
- [40] Manduva, V.C. (2024) Current State and Future Directions for AI Research in the Corporate World. The Metascience. 2(4): 70-83.
- [41] Manduva, V.C. (2023) Model Compression Techniques for Seamless Cloud-to-Edge AI Development. The Metascience. 1(1): 239-261.
- [42] Tulli, S.K.C. (2023) Utilisation of Artificial Intelligence in Healthcare Opportunities and Obstacles. The Metascience. 1(1): 81-92.
- [43] Nersu, S. R. K., Kathram, S. R., & Mandaloju, N. (2020). Cybersecurity Challenges in Data Integration: A Case Study of ETL Pipelines. Revista de Inteligencia Artificial en Medicina, 11(1), 422-439.
- [44] Srinivas, N., Mandaloju, N., & Nadimpalli, S. V. (2020). Cross-Platform Application Testing: Al-Driven Automation Strategies. Artificial Intelligence and Machine Learning Review, 1(1), 8-17.
- [45] Tulli, S.K.C. (2023) Analysis of the Effects of Artificial Intelligence (AI) Technology on the Healthcare Sector: A Critical Examination of Both Perspectives. International Journal of Social Trends. 1(1): 112-127.
- [46] Tulli, S.K.C. (2023) Warehouse Layout Optimization: Techniques for Improved Order Fulfillment Efficiency. International Journal of Acta Informatica. 2(1): 138-168.
- [47] Mandaloju, N., Srinivas, N., & Nadimpalli, S. V. (2020). Machine Learning for Ensuring Data Integrity in Salesforce Applications. Artificial Intelligence and Machine Learning Review, 1(2), 9-21.
- [48] Pasham, S.D. (2023) Opportunities and Difficulties of Artificial Intelligence in Medicine Existing Applications, Emerging Issues, and Solutions. The Metascience. 1(1): 67-80.
- [49] Muppalaneni, R., Inaganti, A. C., & Ravichandran, N. (2024). AI-Enhanced Data Loss Prevention (DLP) Strategies for Multi-Cloud Environments. Journal of Computing Innovations and Applications, 2(2), 1-13.
- [50] Pasham, S.D. (2023) Optimizing Blockchain Scalability: A Distributed Computing Perspective. The Metascience. 1(1): 185-214.
- [51] Pasham, S.D. (2023) Network Topology Optimization in Cloud Systems Using Advanced Graph Coloring Algorithms. The Metascience. 1(1): 122-148.
- [52] Ravichandran, N., Inaganti, A. C., & Muppalaneni, R. (2023). AI-Driven Sentiment Analysis for Employee Engagement and Retention. Journal of Computing Innovations and Applications, 1(01), 1-9.
- [53] Pasham, S.D. (2023) Application of AI in Biotechnologies: A systematic review of main trends. International Journal of Acta Informatica. 2: 92-104.
- [54] Ravichandran, N., Inaganti, A. C., & Muppalaneni, R. (2023). AI-Powered Payroll Fraud Detection: Enhancing Financial Security in HR Systems. Journal of Computing Innovations and Applications, 1(2), 1-11.
- [55] Pasham, S.D. (2024) Robotics and Artificial Intelligence in Healthcare During Covid-19. The Metascience. 2(4): 35-51.
- [56] Pasham, S.D. (2024) Advancements and Breakthroughs in the Use of AI in the Classroom. International Journal of Acta Informatica. 3(1): 18-34.
- [57] Sundaramurthy, S. K., Ravichandran, N., Inaganti, A. C., & Muppalaneni, R. (2022). AI-Powered Operational Resilience: Building Secure, Scalable, and Intelligent Enterprises. Artificial Intelligence and Machine Learning Review, 3(1), 1-10.
- [58] Mandaloju, N. kumar Karne, V., Srinivas, N., & Nadimpalli, SV (2021). Overcoming Challenges in Salesforce Lightning Testing with AI Solutions. ESP Journal of Engineering & Technology Advancements (ESP-JETA), 1(1), 228-238
- [59] Tulli, S.K.C. (2023) Enhancing Marketing, Sales, Innovation, and Financial Management Through Machine Learning. International Journal of Modern Computing. 6(1): 41-52.
- [60] Mandaloju, N. kumar Karne, V., Srinivas, N., & Nadimpalli, SV (2021). A Unified Approach to QA Automation in Salesforce Using AI, ML, and Cloud Computing. ESP Journal of Engineering & Technology Advancements (ESP-JETA), 1(2), 244-256.