Research on Resources Based on Hypotheses Grid Computing Scheduling

Vinay Chowdary Manduva^{1*}

¹Department of Computer Science, Missouri State University, Springfield, MO, UNITED STATES

ABSTRACT

When it comes to grid computing, resource scheduling is all about efficiently matching workloads with resources. Grid computing's varied environment makes resource scheduling a challenging undertaking. At its heart, Grid resource management systems are Scheduling. The effective scheduling of resources in Grid computing has been the subject of several research proposals. A overview of Grid computing resource scheduling strategies based on heuristics is described in this work. These systems are mainly categorized into two groups: meta-heuristics and hyper-heuristics. With varying restrictions, we compared all of the approaches.

Keywords: Metaheuristics; Hyperheuristics; Grid Computing

Introduction

Grid computing is becoming a key component of network technology that can meet the power needs of massive computational workloads. The idea behind the grid is to put all the unused network resources to good use. Grids can be useful for solving intense issues in many different scientific fields. An expert set of methods is required to deal with the myriad resource management issues that crop up as the grid expands. The assignment of tasks to appropriate grid resources is an NP-complete issue due to the heterogeneity and dynamic nature of these resources. It is recommended to use heuristic approaches for solving NP complete issues. Metaheuristics and hyper heuristics are the two primary types of heuristics used in grid computing. Grid has several problems, such as managing information, scheduling jobs, ensuring resources are available, and dealing with security-related concerns [1–15].

Several heuristic methods that are applicable to Grid scheduling are covered in this work. Both meta heuristics and hyper heuristics are key techniques. As an issue-specific approach to solution, metaheuristics necessitate familiarity with the problem area and relevant prior experience. In order to provide the best answer for every given issue, hyper heuristics are designed to be generic optimization approaches. Instead of candidate solutions, they work on the heuristic search space. When it comes to scheduling resources, both systems provide excellent ideal solutions.

The scheduling of resources in Grid computing, which is the second part of the article. Section 3 provides a taxonomy of Grid computing heuristic methods, Section 4 analyses how well they function, and Section 5 brings the study to a close.

Scheduling of Resources

Resource scheduling is the meat and potatoes of grid management systems when it comes to managing issues effectively. Being a diverse environment, the Grid system requires efficient algorithms to schedule resources in a way that completes job execution appropriately. In the

event of a failure, these resources may be able to enter or exit the system autonomously and sit idle for a while. To build a schedule that adapts to environmental heterogeneity and dynamism while attempting to reduce overall task execution time, a scheduling method is required. Resource identification, resource selection, and task execution are the three fundamental processes in mapping resources to jobs [16–28].

(1) Finding the System's Available Resources: This involves looking for the system's resources that have not been assigned yet.

Second, while allocating resources, it is necessary to choose the best one according to a heuristic algorithm that will schedule the tasks in the queue.

Thirdly, carrying out the work entails assigning the chosen resource to the assignment and then carrying it out [16-32].

Grid resource management systems essentially involve assigning tasks to the resources that are available for use in making those tasks. In order to meet the user's expectations, this procedure involves searching across many administrative domains to utilize the resources available from the Grid infrastructure. There are two stages to grid scheduling. The first step is to determine which resources are needed based on user requests. The second step is to assign jobs to those resources, which further ensures that QoS parameters are nearly optimally satisfied. Grid job scheduling can be done with or without time characteristics, depending on the resource broker's decision-making policies. In the latter case, time characteristics derived from prediction mechanisms are used. After receiving offers from resource providers according to their local policies, the grid resource broker is then tasked with finding those resources, binding user applications to them, allocating jobs to those resources, starting computational adaptive changes to those resources, and finally, showing the user the grid as a bound resource.

Optimization via Metaheuristics

The Resources management system revolves around scheduling. A challenge of NP completeness is the grid scheduling. Grid scheduling difficulties are solved using a variety of metaheuristic approaches [33-48].

Particle Swarm Optimization

Among the most recent evolutionary optimization methods that draw inspiration from nature is Particle Swarm Optimization (PSO). Swarm intelligence is the basis of this resilient stochastic optimization method. It has been effectively used as a notion for social involvement in issue solving and has greater global searching capabilities. In comparison to genetic algorithms and simulated algorithms, it also contains less parameters. The PSO technique is also effective for the vast majority of global optimization issues. When dealing with severely distorted characters, the PSO method is used to tackle the grid scheduling problem. A swarm of agents, or particles, navigates the search space in pursuit of the optimal solution; this is the core principle of PSO. Imagine an N-dimensional space filled with points that adapt their movement based on their own and other particles' past movements. In this space, each particle keeps track of its own coordinates, which correspond to the best fitness

value it has achieved thus far; this value is called pbest. The heuristic also finds the best value, which is the gbest, which is the best value that any particle in the vicinity of that particle has attained so far. At each time step, the fundamental idea of PSO is to randomly accelerate the weight of each particle toward its pbest and gbest positions.

Based on the available information, such as the current velocities, positions, distance between the heuristic's current position and its pbest, and distance between the heuristic's current position and its gbest, the particles attempt to modify their the group's gbest is defined as [49–62].

With PSO, every particle remains a part of the population as the run progresses. Therefore, PSO is useful for quickly and easily obtaining the best options. The PSO lacks a selection operation, distinguishing it from genetic algorithms and other evolutionary systems. One algorithm that doesn't use the SOS principle is PSO.

Genomic Method

When it comes to optimization and search space issues, a genetic algorithm (GA) is a search strategy that computers utilize to find genuine or approximate answers. One kind of search heuristic is the genetic algorithm. A subset of evolutionary algorithms, genetic algorithms draw on principles from evolutionary biology, including natural selection, mutation, inheritance, and recombination to determine the optimal set of chromosomes to utilize. Of the several metaheuristics used to solve scheduling issues, genetic algorithms have shown to be the most effective and widely used. Based on the natural progression of genes in living things, genetic algorithms are adaptable approaches to optimization issues. A genetic algorithm is a kind of algorithm that may be used to solve real-world issues [63–88]. Much effort has gone into developing genetic algorithms for grid scheduling, with the goal of producing optimum schedules. The genetic algorithm makes advantage of the natural language of behavior. In their working environment, there is a population of people, each of whom represents a potential solution, or partial solution, to a problem; for example, a population of 1000 chromosomes. A fitness value is assigned to each individual chromosome based on how optimum it is at solving the given task. By allowing cross-breeding, the population ensures that the fittest individuals have the chance to procreate. In scientific parlance, this phenomenon is called mutation and cross-over. The basic outline of a genetic algorithm is as follows.

Establishing a baseline population; Assessing

The stopping requirements have not been reached yet.

Evaluation, Selection, Crossover, and Mutation

New people are created through the mutation process; these children acquire certain traits from their parents. This process, which involves mating individuals with higher fitness values, involves exploring the majority of the available search space in the environment. If the genetic algorithm is well-designed, the population will come together to find the best solution to the problem. The algorithm's reproduction phase enhances the genetic algorithm's performance. In which, the chromosomes of the chosen parents are recombined utilizing

mechanisms of mutation and crossover. Crossover refers to the process of randomly dividing a pair of chromosomes into two sets, one with the "head" and the other with "tail" halves. A new chromosome is generated by exchanging the tail parts. Therefore, the two progeny inherit a combination of genes from both parents, as well as the mutation process, which alters genes with a less-than-random probability. Because of this, finding the best option becomes considerably easier [89-108].

Tabu Search in Genetic Algorithms

It combines elements of both Genetic Algorithm and Tabu Search, two metaheuristics methodologies. The GA-TS hybrid algorithm keeps the tabu list up to date. Metaheuristic neighborhood search with overriding local optimality is the basis of this approach. It guides the process of choosing neighbors. This hybrid heuristic attempts to mimic human memory processes in a deterministic manner, in contrast to Simulated Annealing. The memory stores the previously visited solutions, and the search is based on a list of the fitness values of the neighbors, utilizing basic yet effective data structures. Thus, the presence or absence of a chromosome in the tabu list is verified whenever a new chromosome is generated by population-level mutation. No matter how good it is in comparison to the existing answer, it gets rejected if it is there. After adding the new solution to the tabu list and checking its quality, if it is not already there, it is added. We will accept it if its quality is greater than the present solution. In order to decrease run time, the hybrid guarantees that previously visited solutions are not revisited. Since it is both adaptive and sequential, it aids in finding the best solution [109–118].

Analytical shortcuts

Instead than focusing on fixing a single problem, hyper heuristics aims to construct systems that can manage classes of problems. Efficiently solving search space issues is the goal of hyper-heuristics, a type of heuristic search approach. Each heuristic has its advantages and disadvantages, and there may be more than one heuristic to pick from when addressing an issue. The goal is to come up with algorithms all at once by merging the good and bad characteristics of existing heuristics in the search field. One may find both high-level methodologies and sets of low-level heuristics in a typical design of a hyperheuristic framework. The high-level technique takes an instance of the issue and, based on the problem state, decides which low-level heuristic to apply at any given time.

Metaheuristics are a kind of issue-specific technique to solving problems; using them effectively calls for extensive expertise of the problem domain and its attributes, as well as meticulous parameter adjustment. In exchange for theoretical simplicity or improved computer efficiency, heuristics are believed to sacrifice accuracy and precision. Given that many metaheuristics in the search space environment have their own set of pros and cons, it only makes sense to look for ways to combine them such that their strengths may compensate for each other's shortcomings [119-124]. This may be illustrated in a more basic form as follows:

use heuristic1 on p if issue type(p) is equal to p1.

then execute heuristic2 on p if issue type(p) is equal to p2.

in any other case when

At the other end of the spectrum from the previous method would be an algorithm with endless switch statements that lists every finite problem and uses the best known heuristics for each one. This is obviously not the greatest way to solve problems. It is more effective to use many heuristics at different stages of the solution process, each of which improves performance under the specific conditions of the issue. An approach to selecting a heuristic from a pool of low-level heuristics is known as a hyper-heuristic. You may think of it as a supervisor that oversees the process of building a solution or timetable by controlling the selection of a local search neighborhood. A low-level heuristic, or local search neighbor, is an easy-to-implement rule or strategy that often results in a little adjustment to the scheduling procedure. These strategies might be as complex as metaheuristics or as basic as hyperheuristics.

Two steps, heuristic selection and movement acceptance, make up a single hyperheuristic method iteration. These low-level heuristics are picked at random by the simple selection techniques. At each iteration, greedy hyperheuristics chooses the heuristic that performs the best. A choice function is used to keep track of each heuristic's prior performance and make a choice. There are two possible types of movement acceptance: deterministic and nondeterministic. It is possible to use the huge deluge method as a nondeterministic acceptance criterion. An improved version of the Great Deluge algorithm [Gunter (1993)] forms the basis of the employed hyperheuristic method. When choosing a heuristic, the greedy selection heuristic is employed. Presented here is the fundamental idea behind the Extended Great Deluge Hyper-heuristic Algorithm.

Procedure 1: Setting Up

- 1.Set up the population.
- 2.N is the number of iterations set;
- 3. Determining the fitness function f(s)
- 4.Beginning point B0 = f(s)
- 5.Parameter B must be specified.
- 6. Fix the value of i to 1;

In Step 2, when the condition is not stopped, process the ith chromosome.

- 1. Applying the selection heuristic, choose the candidate solution s*.
- 2.Find s*'s fitness function.
- 3.It is valid to accept s^* if $f(s^*) < B$, and $f(s) = f(s^*)$.
- 4.(B) is equal to (B- Δ B).

At the beginning of the process, we set the fitness function f(so) to level B. ΔB gradually reduces this with each cycle. The algorithm's execution is reliant on the total number of iterations, starting fitness function, and the parameter ΔB being chosen.

The main distinction between hyper-heuristics and metaheuristics is that hyper-heuristics keep searching within a space of heuristics, whereas most metaheuristic implementations seek within a space of issue solutions. So, instead of attempting to solve a problem directly, hyper-heuristics seek out the appropriate approach or sequence of heuristics for a particular scenario. Also, instead than focusing on fixing a specific problem, try to find a universally applicable technique. Based on the properties of the solution space region being explored, the hyperheuristic determines which low-level heuristic approach should be employed at every particular occurrence [125-207]. This indicates that the hyperheuristic does not actively seek for a more optimal solution. Instead, it chooses the most promising basic low-level heuristic at each phase of the solution process, with the potential to enhance the result. Therefore, the Hyperheuristic is an innovative method that combines a straightforward scheduling procedure with high-level methodology.

Assessment of Achievement

A number of test scenarios were run through the scheduling experiment in order to assess the heuristics. To ensure the statistical accuracy, we have utilized an average of fifty runs. A graphical representation of the findings and performance of the scheduling experiments is provided for many test scenarios. Figures 2 and 3 demonstrate a comparison of the performance of the genetic algorithm, hyper-heuristic, GA-TS, and particle swarm optimization across fifty runs of the sample instances.

Conclusion

One of the most difficult aspects of Grid computing is scheduling, which has arisen as a solution to problems on a vast scale in the fields of science, engineering, and other related fields. While meta-heuristics perform admirably in a Grid computing setting, they struggle to deliver satisfactory results when faced with a greater volume of workloads in a heterogeneous setting. When these factors and the outcomes of the simulations are taken into account, it becomes clear that the hyperheuristic offers a superior, less heterogeneous, and almost ideal solution to the scheduling challenges that arise in a Grid. In this research, we try to schedule jobs in a grid environment utilizing hyper heuristics on top of meta heuristics developed using existing heuristics, and these heuristics include Genetic Algorithm, Particle Swarm Optimization, and a hybrid of Genetic and Tabu Search. Experimental results demonstrate that, across all test situations, the hyper heuristic based on hybrid metaheuristics outperforms the individual hybrid heuristics. The computing effort required by global optimization techniques is substantial. Therefore, in a dynamic setting such as Grid computing, the most important thing is to build schedules as quickly as possible, which implies that scheduling should have a minimal makespan. With the advent of the hyperheuristic, grid computing scheduling problems may now be more easily and effectively handled. For this reason, Grid computing is the most practical option.

References

- [1] Reddy, V.M. and L.N. Nalla. (2024) Real-time Data Processing in E-commerce: Challenges and Solutions. International Journal of Advanced Engineering Technologies and Innovations. 1(3): 297-325.
- [2] Reddy, V.M. and L.N. Nalla. (2024) Leveraging Big Data Analytics to Enhance Customer Experience in E-commerce. Revista Espanola de Documentacion Cientifica. 18(02): 295-324.
- [3] Reddy, V.M. and L.N. Nalla. (2024) Optimizing E-Commerce Supply Chains Through Predictive Big Data Analytics: A Path to Agility and Efficiency. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 15(1): 555-585.
- [4] Reddy, V.M. and L.N. Nalla. (2024) Personalization in E-Commerce Marketing: Leveraging Big Data for Tailored Consumer Engagement. Revista de Inteligencia Artificial en Medicina. 15: 691-725.
- [5] Nalla, L.N. and V.M. Reddy. (2024) AI-driven big data analytics for enhanced customer journeys: A new paradigm in e-commerce. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 719-740.
- [6] Reddy, V.M. and L.N. Nalla. (2023) The Future of E-commerce: How Big Data and AI are Shaping the Industry. International Journal of Advanced Engineering Technologies and Innovations. 1(03): 264-281.
- [7] Reddy, V.M. (2023) Data Privacy and Security in E-commerce: Modern Database Solutions. International Journal of Advanced Engineering Technologies and Innovations. 1(03): 248-263.
- [8] Reddy, V.M. and L.N. Nalla. (2022) Enhancing Search Functionality in E-commerce with Elasticsearch and Big Data. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 37-53.
- [9] Nalla, L.N. and V.M. Reddy. (2022) SQL vs. NoSQL: Choosing the Right Database for Your Ecommerce Platform. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 54-69.
- [10] Reddy, V.M. and L.N. Nalla. (2021) Harnessing Big Data for Personalization in E-commerce Marketing Strategies. Revista Espanola de Documentacion Cientifica. 15(4): 108-125.
- [11] Reddy, V.M. (2021) Blockchain Technology in E-commerce: A New Paradigm for Data Integrity and Security. Revista Espanola de Documentacion Cientifica. 15(4): 88-107.
- [12] Nalla, L.N. and V.M. Reddy. (2021) Scalable Data Storage Solutions for High-Volume E-commerce Transactions. International Journal of Advanced Engineering Technologies and Innovations. 1(4): 1-16.
- [13] Reddy, V.M. and L.N. Nalla. (2020) The Impact of Big Data on Supply Chain Optimization in Ecommerce. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 1-20.

- [14] Nalla, L.N. and V.M. Reddy. (2020) Comparative Analysis of Modern Database Technologies in Ecommerce Applications. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 21-39.
- [15] Nalla, L.N. and V.M. Reddy. Machine Learning and Predictive Analytics in E-commerce: A Data-driven Approach.
- [16] Nalla, L.N. and V.M. Reddy. (2024) AI-Driven Big Data Analytics for Enhanced Customer Journeys: A New Paradigm in E-Commerce. International Journal of Advanced Engineering Technologies and Innovations. 1: 719-740.
- [17] Maddireddy, B.R. and B.R. Maddireddy. (2024) Advancing Threat Detection: Utilizing Deep Learning Models for Enhanced Cybersecurity Protocols. Revista Espanola de Documentacion Científica. 18(02): 325-355.
- [18] Maddireddy, B.R. and B.R. Maddireddy. (2024) The Role of Reinforcement Learning in Dynamic Cyber Defense Strategies. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 267-292.
- [19] Maddireddy, B.R. and B.R. Maddireddy. (2024) A Comprehensive Analysis of Machine Learning Algorithms in Intrusion Detection Systems. Journal Environmental Sciences And Technology. 3(1): 877-891.
- [20] Maddireddy, B.R. and B.R. Maddireddy. (2024) Neural Network Architectures in Cybersecurity: Optimizing Anomaly Detection and Prevention. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 238-266.
- [21] Maddireddy, B.R. and B.R. Maddireddy. (2023) Automating Malware Detection: A Study on the Efficacy of AI-Driven Solutions. Journal Environmental Sciences And Technology. 2(2): 111-124.
- [22] Maddireddy, B.R. and B.R. Maddireddy. (2023) Enhancing Network Security through AI-Powered Automated Incident Response Systems. International Journal of Advanced Engineering Technologies and Innovations. 1(02): 282-304.
- [23] Maddireddy, B.R. and B.R. Maddireddy. (2023) Adaptive Cyber Defense: Using Machine Learning to Counter Advanced Persistent Threats. International Journal of Advanced Engineering Technologies and Innovations. 1(03): 305-324.
- [24] Maddireddy, B.R. and B.R. Maddireddy. (2022) Real-Time Data Analytics with AI: Improving Security Event Monitoring and Management. Unique Endeavor in Business & Social Sciences. 1(2): 47-62.
- [25] Maddireddy, B.R. and B.R. Maddireddy. (2022) Blockchain and AI Integration: A Novel Approach to Strengthening Cybersecurity Frameworks. Unique Endeavor in Business & Social Sciences. 5(2): 46-65.
- [26] Maddireddy, B.R. and B.R. Maddireddy. (2022) AI-Based Phishing Detection Techniques: A Comparative Analysis of Model Performance. Unique Endeavor in Business & Social Sciences. 1(2): 63-77.
- [27] Maddireddy, B.R. and B.R. Maddireddy. (2022) Cybersecurity Threat Landscape: Predictive Modelling Using Advanced AI Algorithms. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 270-285.

- [28] Maddireddy, B.R. and B.R. Maddireddy. (2021) Cyber security Threat Landscape: Predictive Modelling Using Advanced AI Algorithms. Revista Espanola de Documentacion Cientifica. 15(4): 126-153.
- [29] Maddireddy, B.R. and B.R. Maddireddy. (2021) Enhancing Endpoint Security through Machine Learning and Artificial Intelligence Applications. Revista Espanola de Documentacion Científica. 15(4): 154-164.
- [30] Maddireddy, B.R. and B.R. Maddireddy. (2021) Evolutionary Algorithms in Al-Driven Cybersecurity Solutions for Adaptive Threat Mitigation. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 17-43.
- [31] Maddireddy, B.R. and B.R. Maddireddy. (2020) AI and Big Data: Synergizing to Create Robust Cybersecurity Ecosystems for Future Networks. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 40-63.
- [32] Maddireddy, B.R. and B.R. Maddireddy. (2020) Proactive Cyber Defense: Utilizing AI for Early Threat Detection and Risk Assessment. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 64-83.
- [33] Goriparthi, R.G. and S. Luqman. (2024) Deep Learning Architectures for Real-Time Image Recognition: Innovations and Applications. Revista de Inteligencia Artificial en Medicina. 15(1): 880-907.
- [34] Goriparthi, R.G. (2024) Adaptive Neural Networks for Dynamic Data Stream Analysis in Real-Time Systems. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 15(1): 689-709.
- [35] Goriparthi, R.G. (2024) Hybrid AI Frameworks for Edge Computing: Balancing Efficiency and Scalability. International Journal of Advanced Engineering Technologies and Innovations. 2(1): 110-130.
- [36] Goriparthi, R.G. (2024) AI-driven predictive analytics for autonomous systems: A machine learning approach. Revista de Inteligencia Artificial en Medicina. 15(1): 843-879.
- [37] Goriparthi, R.G. (2024) Reinforcement Learning in IoT: Enhancing Smart Device Autonomy through AI. Computing. 2: 89-109.
- [38] Goriparthi, R.G. (2023) AI-Augmented Cybersecurity: Machine Learning for Real-Time Threat Detection. Revista de Inteligencia Artificial en Medicina. 14(1): 576-594.
- [39] Goriparthi, R.G. (2023) AI-Enhanced Data Mining Techniques for Large-Scale Financial Fraud Detection. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 14(1): 674-699.
- [40] Goriparthi, R.G. (2023) Leveraging AI for Energy Efficiency in Cloud and Edge Computing Infrastructures. International Journal of Advanced Engineering Technologies and Innovations. 1(01): 494-517.
- [41] Goriparthi, R.G. (2022) Interpretable Machine Learning Models for Healthcare Diagnostics: Addressing the Black-Box Problem. Revista de Inteligencia Artificial en Medicina. 13(1): 508-534.

- [42] Goriparthi, R.G. (2022) Deep Reinforcement Learning for Autonomous Robotic Navigation in Unstructured Environments. International Journal of Advanced Engineering Technologies and Innovations. 1(3): 328-344.
- [43] Goriparthi, R.G. (2022) AI in Smart Grid Systems: Enhancing Demand Response through Machine Learning. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 13(1): 528-549.
- [44] Goriparthi, R.G. (2022) AI-Powered Decision Support Systems for Precision Agriculture: A Machine Learning Perspective. International Journal of Advanced Engineering Technologies and Innovations. 1(3): 345-365.
- [45] Goriparthi, R.G. (2021) AI-Driven Natural Language Processing for Multilingual Text Summarization and Translation. Revista de Inteligencia Artificial en Medicina. 12(1): 513-535.
- [46] Goriparthi, R.G. (2021) AI and Machine Learning Approaches to Autonomous Vehicle Route Optimization. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 12(1): 455-479.
- [47] Goriparthi, R.G. (2021) Scalable AI Systems for Real-Time Traffic Prediction and Urban Mobility Management. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 255-278.
- [48] Goriparthi, R.G. (2020) AI-Driven Automation of Software Testing and Debugging in Agile Development. Revista de Inteligencia Artificial en Medicina. 11(1): 402-421.
- [49] Goriparthi, R.G. (2020) Neural Network-Based Predictive Models for Climate Change Impact Assessment. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 11(1): 421-421.
- [50] Yanamala, A.K.Y., S. Suryadevara, and V.D.R. Kalli. (2024) Balancing innovation and privacy: The intersection of data protection and artificial intelligence. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 15(1): 1-43.
- [51] Yanamala, A.K.Y. and S. Suryadevara. (2024) Navigating data protection challenges in the era of artificial intelligence: A comprehensive review. Revista de Inteligencia Artificial en Medicina. 15(1): 113-146.
- [52] Yanamala, A.K.Y. and S. Suryadevara. (2024) Emerging Frontiers: Data Protection Challenges and Innovations in Artificial Intelligence. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 15: 74-102.
- [53] Yanamala, A.K.Y. (2024) Emerging challenges in cloud computing security: A comprehensive review. International Journal of Advanced Engineering Technologies and Innovations. 1(4): 448-479.
- [54] Yanamala, A.K.Y. (2024) Optimizing data storage in cloud computing: techniques and best practices. International Journal of Advanced Engineering Technologies and Innovations. 1(3): 476-513.

- [55] Yanamala, A.K.Y., S. Suryadevara, and V.D.R. Kalli. (2023) Evaluating the impact of data protection regulations on AI development and deployment. International Journal of Advanced Engineering Technologies and Innovations. 1(01): 319-353.
- [56] Yanamala, A.K.Y. and S. Suryadevara. (2023) Advances in Data Protection and Artificial Intelligence: Trends and Challenges. International Journal of Advanced Engineering Technologies and Innovations. 1(01): 294-319.
- [57] Yanamala, A.K.Y. (2023) Secure and private AI: Implementing advanced data protection techniques in machine learning models. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 14(1): 105-132.
- [58] Yanamala, A.K.Y. and S. Suryadevara. (2022) Cost-Sensitive Deep Learning for Predicting Hospital Readmission: Enhancing Patient Care and Resource Allocation. International Journal of Advanced Engineering Technologies and Innovations. 1(3): 56-81.
- [59] Yanamala, A.K.Y. and S. Suryadevara. (2022) Adaptive Middleware Framework for Context-Aware Pervasive Computing Environments. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 13(1): 35-57.
- [60] Suryadevara, S., A.K.Y. Yanamala, and V.D.R. Kalli. (2021) Enhancing Resource-Efficiency and Reliability in Long-Term Wireless Monitoring of Photoplethysmographic Signals. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 12(1): 98-121.
- [61] Suryadevara, S. and A.K.Y. Yanamala. (2021) A Comprehensive Overview of Artificial Neural Networks: Evolution, Architectures, and Applications. Revista de Inteligencia Artificial en Medicina. 12(1): 51-76.
- [62] Woldaregay, A.Z., B. Yang, and E.A. Snekkenes. Data-Driven and Artificial Intelligence (AI) Approach for Modelling and Analyzing Healthcare Security Practice: A Systematic. in Intelligent Systems and Applications: Proceedings of the 2020 Intelligent Systems Conference (IntelliSys) Volume 1. 2020. Springer Nature.
- [63] Suryadevara, S. and A.K.Y. Yanamala. (2020) Patient apprehensions about the use of artificial intelligence in healthcare. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 11(1): 30-48.
- [64] Suryadevara, S. and A.K.Y. Yanamala. (2020) Fundamentals of Artificial Neural Networks: Applications in Neuroscientific Research. Revista de Inteligencia Artificial en Medicina. 11(1): 38-54.
- [65] Gadde, H. (2024) AI-Powered Fault Detection and Recovery in High-Availability Databases. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 15(1): 500-529.
- [66] Gadde, H. (2024) AI-Driven Data Indexing Techniques for Accelerated Retrieval in Cloud Databases. Revista de Inteligencia Artificial en Medicina. 15(1): 583-615.
- [67] Gadde, H. (2024) AI-Augmented Database Management Systems for Real-Time Data Analytics. Revista de Inteligencia Artificial en Medicina. 15(1): 616-649.

- [68] Gadde, H. (2024) Optimizing Transactional Integrity with AI in Distributed Database Systems. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 621-649.
- [69] Gadde, H. (2024) Intelligent Query Optimization: AI Approaches in Distributed Databases. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 650-691.
- [70] Gadde, H. (2023) Leveraging AI for Scalable Query Processing in Big Data Environments. International Journal of Advanced Engineering Technologies and Innovations. 1(02): 435-465.
- [71] Gadde, H. (2023) AI-Driven Anomaly Detection in NoSQL Databases for Enhanced Security. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 14(1): 497-522.
- [72] Gadde, H. (2023) Self-Healing Databases: AI Techniques for Automated System Recovery. International Journal of Advanced Engineering Technologies and Innovations. 1(02): 517-549.
- [73] Gadde, H. (2023) AI-Based Data Consistency Models for Distributed Ledger Technologies. Revista de Inteligencia Artificial en Medicina. 14(1): 514-545.
- [74] Gadde, H. (2022) AI in Dynamic Data Sharding for Optimized Performance in Large Databases. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 13(1): 413-440.
- [75] Gadde, H. (2022) AI-Enhanced Adaptive Resource Allocation in Cloud-Native Databases. Revista de Inteligencia Artificial en Medicina. 13(1): 443-470.
- [76] Gadde, H. (2022) Integrating AI into SQL Query Processing: Challenges and Opportunities. International Journal of Advanced Engineering Technologies and Innovations. 1(3): 194-219.
- [77] Gadde, H. (2022) Federated Learning with AI-Enabled Databases for Privacy-Preserving Analytics. International Journal of Advanced Engineering Technologies and Innovations. 1(3): 220-248.
- [78] Gadde, H. (2021) Secure Data Migration in Multi-Cloud Systems Using AI and Blockchain. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 128-156.
- [79] Gadde, H. (2021) AI-Driven Predictive Maintenance in Relational Database Systems. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 12(1): 386-409.
- [80] Gadde, H. (2021) AI-Powered Workload Balancing Algorithms for Distributed Database Systems. Revista de Inteligencia Artificial en Medicina. 12(1): 432-461.
- [81] Gadde, H. (2020) AI-Assisted Decision-Making in Database Normalization and Optimization. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 11(1): 230-259.
- [82] Gadde, H. (2020) AI-Enhanced Data Warehousing: Optimizing ETL Processes for Real-Time Analytics. Revista de Inteligencia Artificial en Medicina. 11(1): 300-327.

- [83] Gadde, H. (2020) Improving Data Reliability with AI-Based Fault Tolerance in Distributed Databases. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 183-207.
- [84] Gadde, H. (2019) Integrating AI with Graph Databases for Complex Relationship Analysis. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 294-314.
- [85] Chirra, D.R. (2024) Blockchain-Integrated IAM Systems: Mitigating Identity Fraud in Decentralized Networks. International Journal of Advanced Engineering Technologies and Innovations. 2(1): 41-60.
- [86] Chirra, D.R. (2024) Advanced Threat Detection and Response Systems Using Federated Machine Learning in Critical Infrastructure. International Journal of Advanced Engineering Technologies and Innovations. 2(1): 61-81.
- [87] Chirra, D.R. (2024) AI-Augmented Zero Trust Architectures: Enhancing Cybersecurity in Dynamic Enterprise Environments. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 15(1): 643-669.
- [88] Chirra, D.R. (2024) Quantum-Safe Cryptography: New Frontiers in Securing Post-Quantum Communication Networks. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 15(1): 670-688.
- [89] Chirra, D.R. (2024) Secure Data Sharing in Multi-Cloud Environments: A Cryptographic Framework for Healthcare Systems. Revista de Inteligencia Artificial en Medicina. 15(1): 821-843.
- [90] Chirra, D.R. (2023) AI-Based Threat Intelligence for Proactive Mitigation of Cyberattacks in Smart Grids. Revista de Inteligencia Artificial en Medicina. 14(1): 553-575.
- [91] Chirra, D.R. (2023) The Role of Homomorphic Encryption in Protecting Cloud-Based Financial Transactions. International Journal of Advanced Engineering Technologies and Innovations. 1(01): 452-472.
- [92] Chirra, D.R. (2023) Real-Time Forensic Analysis Using Machine Learning for Cybercrime Investigations in E-Government Systems. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 14(1): 618-649.
- [93] Chirra, D.R. (2023) Towards an AI-Driven Automated Cybersecurity Incident Response System. International Journal of Advanced Engineering Technologies and Innovations. 1(01): 429-451.
- [94] Chirra, D.R. (2023) Deep Learning Techniques for Anomaly Detection in IoT Devices: Enhancing Security and Privacy. Revista de Inteligencia Artificial en Medicina. 14(1): 529-552.
- [95] Chirra, D.R. (2022) Collaborative AI and Blockchain Models for Enhancing Data Privacy in IoMT Networks. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 13(1): 482-504.

- [96] Chirra, D.R. (2022) Secure Edge Computing for IoT Systems: AI-Powered Strategies for Data Integrity and Privacy. Revista de Inteligencia Artificial en Medicina. 13(1): 485-507.
- [97] Chirra, D.R. (2022) AI-Powered Adaptive Authentication Mechanisms for Securing Financial Services Against Cyber Attacks. International Journal of Advanced Engineering Technologies and Innovations. 1(3): 303-326.
- [98] Chirra, D.R. (2022) AI-Driven Risk Management in Cybersecurity: A Predictive Analytics Approach to Threat Mitigation. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 13(1): 505-527.
- [99] Chirra, D.R. (2021) Mitigating Ransomware in Healthcare: A Cybersecurity Framework for Critical Data Protection. Revista de Inteligencia Artificial en Medicina. 12(1): 495-513.
- [100] Chirra, D.R. (2021) The Impact of AI on Cyber Defense Systems: A Study of Enhanced Detection and Response in Critical Infrastructure. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 221-236.
- [101] Chirra, D.R. (2021) AI-Enabled Cybersecurity Solutions for Protecting Smart Cities Against Emerging Threats. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 237-254.
- [102] Chirra, D.R. (2021) Securing Autonomous Vehicle Networks: AI-Driven Intrusion Detection and Prevention Mechanisms. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 12(1): 434-454.
- [103] Chirra, D.R. (2020) AI-Based Real-Time Security Monitoring for Cloud-Native Applications in Hybrid Cloud Environments. Revista de Inteligencia Artificial en Medicina. 11(1): 382-402.
- [104] Chirra, D.R. (2020) Next-Generation IDS: AI-Driven Intrusion Detection for Securing 5G Network Architectures. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 230-245.
- [105] Chirra, B.R. (2024) Revolutionizing Cybersecurity: The Role of AI in Advanced Threat Detection Systems. International Journal of Advanced Engineering Technologies and Innovations. 1(4): 480-504.
- [106] Chirra, B.R. (2024) Predictive AI for Cyber Risk Assessment: Enhancing Proactive Security Measures. International Journal of Advanced Engineering Technologies and Innovations. 1(4): 505-527.
- [107] Chirra, B. (2024) Enhancing Cloud Security through Quantum Cryptography for Robust Data Transmission. Revista de Inteligencia Artificial en Medicina. 15(1): 752-775.
- [108] Chirra, B. (2024) Leveraging Blockchain to Strengthen Information Security in IoT Networks. Revista de Inteligencia Artificial en Medicina. 15(1): 726-751.
- [109] Chirra, B. (2024) Revolutionizing Cybersecurity with Zero Trust Architectures: A New Approach for Modern Enterprises. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 15(1): 586-612.

- [110] Chirra, B.R. (2023) AI-Powered Identity and Access Management Solutions for Multi-Cloud Environments. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 14(1): 523-549.
- [111] Chirra, B.R. (2023) Enhancing Healthcare Data Security with Homomorphic Encryption: A Case Study on Electronic Health Records (EHR) Systems. Revista de Inteligencia Artificial en Medicina. 14(1): 549-59.
- [112] Chirra, B.R. (2023) Advancing Cyber Defense: Machine Learning Techniques for NextGeneration Intrusion Detection. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 14(1): 550-573.
- [113] Chirra, B.R. (2023) Advancing Real-Time Malware Detection with Deep Learning for Proactive Threat Mitigation. International Journal of Advanced Engineering Technologies and Innovations. 1(01): 274-396.
- [114] Chirra, B.R. (2023) Securing Edge Computing: Strategies for Protecting Distributed Systems and Data. International Journal of Advanced Engineering Technologies and Innovations. 1(01): 354-373.
- [115] Chirra, B.R. (2022) AI-Driven Vulnerability Assessment and Mitigation Strategies for CyberPhysical Systems. Revista de Inteligencia Artificial en Medicina. 13(1): 471-493.
- [116] Chirra, B.R. (2022) Strengthening Cybersecurity with Behavioral Biometrics: Advanced Authentication Techniques. International Journal of Advanced Engineering Technologies and Innovations. 1(3): 273-294.
- [117] Chirra, B.R. (2022) Dynamic Cryptographic Solutions for Enhancing Security in 5G Networks. International Journal of Advanced Engineering Technologies and Innovations. 1(3): 249-272.
- [118] Chirra, B.R. (2022) Ensuring GDPR Compliance with AI: Best Practices for Strengthening Information Security. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 13(1): 441-462.
- [119] Chirra, B.R. (2021) Leveraging Blockchain for Secure Digital Identity Management: Mitigating Cybersecurity Vulnerabilities. Revista de Inteligencia Artificial en Medicina. 12(1): 462-482.
- [120] Chirra, B.R. (2021) Intelligent Phishing Mitigation: Leveraging AI for Enhanced Email Security in Corporate Environments. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 178-200.
- [121] Chirra, B.R. (2021) Enhancing Cyber Incident Investigations with AI-Driven Forensic Tools. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 157-177.
- [122] Chirra, B.R. (2021) AI-Driven Security Audits: Enhancing Continuous Compliance through Machine Learning. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence. 12(1): 410-433.
- [123] Chirra, B.R. (2020) AI-Driven Fraud Detection: Safeguarding Financial Data in Real-Time. Revista de Inteligencia Artificial en Medicina. 11(1): 328-347.

- [124] Chirra, B.R. (2020) Advanced Encryption Techniques for Enhancing Security in Smart Grid Communication Systems. International Journal of Advanced Engineering Technologies and Innovations. 1(2): 208-229.
- [125] Tulli, S.K.C. (2023) Utilisation of Artificial Intelligence in Healthcare Opportunities and Obstacles. The Metascience. 1(1): 81-92.
- [126] Tulli, S.K.C. (2023) Analysis of the Effects of Artificial Intelligence (AI) Technology on the Healthcare Sector: A Critical Examination of Both Perspectives. International Journal of Social Trends. 1(1): 112-127.
- [127] Jaladi, D.S. and S. Vutla. (2020) Machine Learning Demystified: Concepts, Algorithms, and Use Cases. The Computertech. 1-12.
- [128] Jaladi, D.S. and S. Vutla. (2023) Revolutionizing Diagnostic Imaging: The Role of Artificial Intelligence in Modern Radiology. The Metascience. 1(1): 284-305.
- [129] Jaladi, D.S. and S. Vutla. (2018) The Use of AI and Big Data in Health Care. The Computertech. 45-53.
- [130] Tulli, S.K.C. (2023) Warehouse Layout Optimization: Techniques for Improved Order Fulfillment Efficiency. International Journal of Acta Informatica. 2(1): 138-168.
- [131] Tulli, S.K.C. (2024) Artificial intelligence, machine learning and deep learning in advanced robotics, a review. International Journal of Acta Informatica. 3(1): 35-58.
- [132] Tulli, S.K.C. (2024) A Literature Review on AI and Its Economic Value to Businesses. The Metascience. 2(4): 52-69.
- [133] Gonugunta, K.C. and T. Sotirios. (2020) Advanced Oracle Methodologies for Operational Excellence. International Journal of Modern Computing. 3(1): 11-25.
- [134] Gonugunta, K.C. and A. Collins. (2021) Data Virtualization and Advancing Data Migration in Mission Critical Environments. The Computertech. 24-33.
- [135] Gonugunta, K.C. and M. Chen. (2022) How Oracle analytics could help Higher Education deliver value to Educators/Students? International Journal of Acta Informatica. 1(1): 138-150.
- [136] Gonugunta, K.C. and M. Chen. (2023) Real Time Data Analytics on Active Data Guard. International Journal of Modern Computing. 6(1): 75-90.
- [137] Tulli, S.K.C. (2024) Enhancing Software Architecture Recovery: A Fuzzy Clustering Approach. International Journal of Modern Computing. 7(1): 141-153.
- [138] Tulli, S.K.C. (2024) Leveraging Oracle NetSuite to Enhance Supply Chain Optimization in Manufacturing. International Journal of Acta Informatica. 3(1): 59-75.
- [139] Tulli, S.K.C. (2024) Motion Planning and Robotics: Simplifying Real-World Challenges for Intelligent Systems. International Journal of Modern Computing. 7(1): 57-71.
- [140] Pemmasani, P.K. and M. Osaka. (2019) Red Teaming as a Service (RTaaS): Proactive Defense Strategies for IT Cloud Ecosystems. The Computertech. 24-30.

- [141] Pemmasani, P.K. and M. Osaka. (2019) Cloud-Based Health Information Systems: Balancing Accessibility with Cybersecurity Risks. The Computertech. 22-33.
- [142] Tulli, S.K.C. (2022) Technologies that Support Pavement Management Decisions Through the Use of Artificial Intelligence. International Journal of Modern Computing. 5(1): 44-60.
- [143] Tulli, S.K.C. (2022) An Evaluation of AI in the Classroom. International Journal of Acta Informatica. 1(1): 41-66.
- [144] Tulli, S.K.C. (2023) The Role of Oracle NetSuite WMS in Streamlining Order Fulfillment Processes. International Journal of Acta Informatica. 2(1): 169-195.
- [145] Pemmasani, P.K. and K. Anderson. (2020) Resilient by Design: Integrating Risk Management into Enterprise Healthcare Systems for the Digital Age. International Journal of Modern Computing. 3(1): 1-10.
- [146] Pemmasani, P.K., M. Osaka, and D. Henry. (2021) From Vulnerability to Victory: Enterprise-Scale Security Innovations in Public Health. International Journal of Modern Computing. 4(1): 50-60.
- [147] Pemmasani, P.K., M. Osaka, and D. Henry. (2021) AI-Powered Fraud Detection in Healthcare Systems: A Data-Driven Approach. The Computertech. 18-23.
- [148] Gonugunta, K.C. (2019) Weblogic and Oracle-Revolutionizing Offender Management System. International Journal of Modern Computing. 2(1): 26-39.
- [149] Gonugunta, K.C. (2019) Utilization of Data in Reducing Recidivism in Nevada Prisons. International Journal of Modern Computing. 2(1): 40-49.
- [150] Gonugunta, K.C. and K. Leo. (2019) Practical Oracle Cloud for Governments. The Computertech. 34-44.
- [151] Gonugunta, K.C. and K. Leo. (2019) The Unexplored Territory in Data Ware Housing. The Computertech. 31-39.
- [152] Gonugunta, K.C. and T. Sotirios. (2020) Data Warehousing-More Than Just a Data Lake. The Computertech. 52-61.
- [153] Pemmasani, P.K. and M.A. Abd Nasaruddin. (2022) Resilient IT Strategies for Governmental Disaster Response and Crisis Management. International Journal of Acta Informatica. 1(1): 151-163.
- [154] Pemmasani, P.K. and M.A. Abd Nasaruddin. (2022) Strengthening Public Sector Data Governance: Risk Management Strategies for Government Organizations. International Journal of Modern Computing. 5(1): 108-118.
- [155] Gonugunta, K.C. and K. Leo. (2024) Higher Ed ERP Systems-The Evolution. The Metascience. 2(3): 1-13.
- [156] Gudepu, B.K. (2019) AI-Enhanced Identity and Access Management: A Machine Learning Approach to Zero Trust Security. The Computertech. 40-53.
- [157] Gudepu, B.K. (2016) AI-Powered Anomaly Detection Systems for Insider Threat Prevention. The Computertech. 1-9.

- [158] Gudepu, B.K. and R. Eichler. (2021) CCPA vs. CPRA: A Deep Dive into Their Impact on Data Privacy and Compliance. The Computertech. 34-46.
- [159] Pemmasani, P.K. (2023) National Cybersecurity Frameworks for Critical Infrastructure: Lessons from Governmental Cyber Resilience Initiatives. International Journal of Acta Informatica. 2(1): 209-218.
- [160] Pemmasani, P.K. (2023) AI in National Security: Leveraging Machine Learning for Threat Intelligence and Response. The Computertech. 1-10.
- [161] Pemmasani, P.K. and D. Rock. (2023) The Impact of Ransomware on Government Agencies: Lessons Learned and Future Strategies. International Journal of Modern Computing. 6(1): 64-74.
- [162] Pemmasani, P.K. and D. Rock. (2023) Cloud Storage Security in Government Agencies: Protecting National Data from Cyber Threats. The Metascience. 1(1): 239-248.
- [163] Pemmasani, P.K. (2024) Behavioral Analytics for Detecting Insider Threats in Governmental Organizations: A Human-Centric Approach. International Journal of Acta Informatica. 3(1): 138-148.
- [164] Tulli, S.K.C. (2023) Enhancing Marketing, Sales, Innovation, and Financial Management Through Machine Learning. International Journal of Modern Computing. 6(1): 41-52.
- [165] Tulli, S.K.C. (2023) Application of Artificial Intelligence in Pharmaceutical and Biotechnologies: A Systematic Literature Review. International Journal of Acta Informatica. 1: 105-115.
- [166] Tulli, S.K.C. (2023) An Analysis and Framework for Healthcare AI and Analytics Applications. International Journal of Acta Informatica. 1: 43-52.
- [167] Pemmasani, P.K. (2024) Cyber Insurance and Risk Transfer Mechanisms for Public Health Entities: Evaluating Post-Attack Financial Recovery. The Computertech. 1-10
- [168] Pemmasani, P.K. and C. Okara. (2024) Machine Learning Models for Predicting Ransomware Attacks on Critical Public Health Infrastructure: A Cross-National Study. The Metascience. 2(2): 75-85.
- [169] Gonugunta, K.C. (2016) Oracle performance: Automatic Database Diagnostic Monitoring. The Computertech. 1-4.
- [170] Gonugunta, K.C. and K. Leo. (2017) Role-Based Access Privileges in a Complex Hierarchical Setup. The Computertech. 25-30.
- [171] Gonugunta, K.C. (2018) ZDL-Zero Data Loss Appliance–How It Helped DOC in Future-Proofing Data. International Journal of Modern Computing. 1(1): 32-37.
- [172] Jaladi, D.S. and S. Vutla. (2019) Revolutionizing Healthcare Through Quantum Computing: Insights and Future Directions. International Journal of Modern Computing. 2(1): 60-83.
- [173] Jaladi, D.S. and S. Vutla. (2024) The Role of Artificial Intelligence in Modern Medicine. The Metascience. 2(4): 96-106.

- [174] Gonugunta, K.C. (2018) Role of Analytics in Offender Management Systems. The Computertech. 27-36.
- [175] Gonugunta, K.C. (2018) Apply Machine Learning Oracle Analytics—Combined. The Computertech. 37-44.
- [176] Gonugunta, K.C. and K. Leo. (2018) Oracle Analytics to Predicting Prison Violence. International Journal of Modern Computing. 1(1): 23-31.
- [177] Gudepu, B.K. and O. Gellago. (2018) Data Profiling, The First Step Toward Achieving High Data Quality. International Journal of Modern Computing. 1(1): 38-50.
- [178] Gudepu, B.K., O. Gellago, and R. Eichler. (2018) Data Quality Metrics How to Measure and Improve Accuracy. International Journal of Modern Computing. 1(1): 51-60.
- [179] Gudepu, B.K. (2016) The Foundation of Data-Driven Decisions: Why Data Quality Matters. The Computertech. 1-5.
- [180] Pemmasani, P.K., K. Anderson, and S. Falope. (2020) Disaster Recovery in Healthcare: The Role of Hybrid Cloud Solutions for Data Continuity. The Computertech. 50-57.
- [181] Pemmasani, P.K. and D. Henry. (2021) Zero Trust Security for Healthcare Networks: A New Standard for Patient Data Protection. The Computertech. 21-27.
- [182] Jaladi, D.S. and S. Vutla. (2024) Machine Learning Techniques for Analyzing Large-Scale Patient Databases. International Journal of Modern Computing. 7(1): 181-198.
- [183] Jaladi, D.S. and S. Vutla. (2022) Medical Decision-Making with the Help of Quantum Computing and Machine Learning: An In-Depth Analysis. International Journal of Acta Informatica. 1(1): 199-215.
- [184] Jaladi, D.S. and S. Vutla. (2021) Quantum AI: Accomplishments and Obstacles in the Convergence of Quantum Computing and Artificial Intelligence. International Journal of Modern Computing. 4(1): 86-95.
- [185] Pemmasani, P.K. and M. Osaka. (2021) The Future of Smart Cities: Cybersecurity Challenges in Public Infrastructure Management. International Journal of Modern Computing. 4(1): 72-85.
- [186] Gonugunta, K.C., M. Chen, and Y. She. (2023) Combining BI and Analytics in Higher Ed. The Metascience. 1(1): 265-283.
- [187] Gonugunta, K.C. and K. Leo. (2024) Utilizing APEX Applications in Analytics. International Journal of Acta Informatica. 3(1): 125-137.
- [188] Gonugunta, K.C. and K. Leo. (2024) ERP Systems in Higher Education Institutions: Adoption, Challenges, and Future Trends. The Metascience. 2(2): 86-96.
- [189] Gonugunta, K.C. and K. Leo. (2024) Role of Data-Driven Decision Making in Enhancing Higher Education Performance: A Comprehensive Analysis of Analytics in Institutional Management. International Journal of Acta Informatica. 3(1): 149-159.

- [190] Gudepu, B.K. (2017) Data Cleansing Strategies, Enabling Reliable Insights from Big Data. The Computertech. 19-24.
- [191] Gudepu, B.K. and D.S. Jaladi. (2022) Data Discovery and Security: Protecting Sensitive Information. International Journal of Acta Informatica. 1(1): 176-187.
- [192] Gudepu, B.K. and D.S. Jaladi. (2021) GDPR Compliance Challenges and How to Overcome Them. International Journal of Modern Computing. 4(1): 61-71.
- [193] Gudepu, B.K., D.S. Jaladi, and O. Gellago. (2023) How Data Catalogs are Transforming Enterprise Data Governance: A Systematic Literature Review. The Metascience. 1(1): 249-264.
- [194] Gudepu, B.K. and E. Eichler. (2020) Metadata is Key to Digital Transformation in Enterprises. International Journal of Modern Computing. 3(1): 26-33.
- [195] Gudepu, B.K. and R. Eichler. (2019) The Power of Business Metadata, Driving Better Decision Making in Business Intelligence. The Computertech. 58-74.
- [196] Gudepu, B.K. and D.S. Jaladi. (2018) The Role of Data Quality Scorecards in Measuring Business Success. The Computertech. 29-36.
- [197] Gudepu, B.K. and O. Gellago. (2019) Unraveling the Divide: How Data Governance and Data Management Shape Enterprise Success. International Journal of Modern Computing. 2(1): 50-59.
- [198] Gudepu, B.K. and D.S. Jaladi. (2022) Why Real-Time Data Discovery is a Game Changer for Enterprises. International Journal of Acta Informatica. 1(1): 164-175.
- [199] Jaladi, D.S. and S. Vutla. (2018) An Analysis of Big Data Analytics in Relation to Artificial Intelligence and Business Intelligence. The Computertech. 37-46.
- [200] Jaladi, D.S. and S. Vutla. (2022) Artificial Intelligence's Influence on Design: A New Era of Creative Collaboration. International Journal of Acta Informatica. 1(1): 188-198.
- [201] Jaladi, D.S. and S. Vutla. (2023) Brainy: An Intelligent Machine Learning Framework. International Journal of Acta Informatica. 2(1): 219-229.
- [202] Gudepu, B.K. and R. Eichler. (2024) The Role of AI in Enhancing Data Governance Strategies. International Journal of Acta Informatica. 3(1): 169-186.
- [203] Gudepu, B.K. and D.S. Jaladi. (2018) The Role of Data Profiling in Improving Data Quality. The Computertech. 21-26.
- [204] Jaladi, D.S. and S. Vutla. (2019) Deploying Breiman's Random Forest Algorithm in Machine Learning. The Computertech. 45-57.
- [205] Jaladi, D.S. and S. Vutla. (2021) Exploring the Current Landscape and Applications of Artificial Intelligence in Healthcare. The Computertech. 28-38.
- [206] Jaladi, D.S. and S. Vutla. (2017) Harnessing the Potential of Artificial Intelligence and Big Data in Healthcare. The Computertech. 31-39.
- [207] Jaladi, D.S. and S. Vutla. (2020) Leveraging Data Mining to Innovate Agricultural Applications. International Journal of Modern Computing. 3(1): 34-46.