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  ABSTRACT  

 
 Recently, Quantum Computing (QC) has garnered increasing attention due to significant 

advancements in the development of functional quantum computers, quantum materials, and 

quantum cryptography. In light of advancements in the physical construction and scaling of quantum 

computers, it is imperative to promote the development of quantum algorithms and methodologies 

tailored to these systems, maximising their inherent computational and communication capabilities. 

In the age of Big Data, several computationally intensive activities are within the domain of Artificial 

Intelligence (AI), encompassing those that are now computationally intractable owing to physical 

constraints. The inherent parallelism, computational efficiency, and representational capacity of 

quantum computing offers a superior alternative to binary computers, promising improved AI 

models. The Quantum Artificial Intelligence (QAI) idea will enable the identification of patterns that 

standard AI algorithms cannot detect, significantly reducing processing time by several orders of 

magnitude. This paper delineates the scientific advancements at the intersection of artificial 

intelligence and quality control. We commence by delineating both domains, fundamental concepts, 

and the chronology of pivotal advancements in the history of AI and QC, subsequently concentrating 

on the current study regarding the bidirectional methodologies wherein QC enhances AI and AI 

augments QC. Ultimately, we delineate prospective research directions for the nascent field of QAI 

and conclude. 
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Algorithms 

Introduction 

Since the onset of the 20th century, the exploration of quantum theory has led to the 

development of quantum-based technologies, which are now influencing fields such as 

encryption, superconductors, and quantum computing (QC). These technologies have 

significant potential, providing enhancements in performance and viable solutions to 

previously insurmountable challenges associated with alternative technologies [1]. During 

the 1980s and 1990s, significant advancements in computation emerged, driven by quantum 

phenomena. Notably, these advancements included (1) hardware developments, with the 

recent milestone of quantum supremacy achieved by IBM's Eagle in November 2021, 

demonstrating a quantum device's capability to solve problems unattainable by 

contemporary binary computers; and (2) extensive initiatives in quantum computing 

technologies, exemplified by the European Commission-funded Quantum Flagship, initiated 

in 2018, aimed at creating a "Quantum Web" of interconnected quantum devices utilising 

quantum communication networks to share resources. Consequently, the conditions are 

ideally established for a significant progression in algorithmics that utilises quantum 
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computational capabilities for complex issues, including those addressed by Artificial 

Intelligence (AI) methodologies [2]. 

Nonetheless, quantum supremacy does not inherently imply superiority in intelligence. In 

1945, John Von Neumann delineated his architecture, and in 1948, Alan Turing wrote his 

renowned essay, Intelligent Machinery. Although the term 'Artificial Intelligence' was 

introduced at the renowned Dartmouth conference in the summer of 1956, and there were 

subsequent advancements in the field over the following decades, it was not until the late 

1990s that AI proved effective in addressing real-world challenges, exemplified by Deep 

Blue's victory over Kasparov. Artificial intelligence has become essential in nearly all facets 

of civilisation. However, this does not apply to the more contemporary Quantum-based AI 

or to AI-driven Quantum methodologies. Consequently, the AI research community must be 

prepared in the short term to prevent a gap when the widespread adoption of quantum 

computers materialises (Fig. 1). 

 

Figure 1. Chronology of developments in classical machines and classical artificial 

intelligence compared to quantum machines and quantum artificial intelligence. 

A Concise Overview of Quantum Computing 

The term quantum computing was first coined by Richard Feynman in 1981 and has since 

had a rich intellectual history. Figure 3 depicts a timeline of major events in this area. 

Noteworthy in the timeline is that while there were somewhat larger gaps between events 

earlier on, recently, the field has started experiencing a more rapid series of developments. 

For example service providers have begun offering niche quantum computing products, as 

well as quantum cloud computing services (e.g., Amazon Braket). Recently, Google’s 54-

qubit computer accomplished a task in merely 200 s that was estimated to take around over 

10,000 years on a classical computing system [3]. Nevertheless, quantum computing is still 

in its infancy stages, and it will take some time before quantum computing chips reach 

desktops or handhelds. An important factor inhibiting the commoditization of quantum 

computing is the fact that controlling quantum effects is a delicate process, and any noise 

(e.g., stray heat) can flip 1s or 0s and disrupt quantum effects, such as superposition. This 

requires qubits to be fully operated under special conditions, such as very cold temperatures, 

sometimes very close to absolute zero. This also motivates research exploring fault-tolerant 
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quantum computing [4]. Considering this fast-paced development of quantum computing, 

this is an opportune time for healthcare researchers and practitioners to investigate its 

benefits to healthcare systems. 

The Build of Hardware since traditional computing systems handle user data and network 

components, it is ideal for a quantum computing system to be able to interface with and make 

efficient use of traditional computing systems. In order to run efficiently, qubit systems need 

to be controlled in a carefully orchestrated fashion, which can be handled using conventional 

computing principles. To understand the hardware components of an analogue gate-based 

quantum computing system, it is possible to map it into various layers. Each layer is 

responsible for performing a different quantum operations and comprise the following: the 

quantum control plane, the measurement plane, and the data plane. The control processor 

plane, which supports the host processor and is responsible for network access, user 

interfaces, and storage arrays, uses measurement outcomes to determine the algorithm's 

required sequence of operations and measurements. 

The Quantum Data Plane 

It is the main component of the quantum computing ecosystem. It broadly consists of 

physical qubits and the structures required to bring them into an organized system. It contains 

support circuits required to identify the state of qubits and perform gated operations. It does 

this for the gate-based system or controlling “the Hamiltonian for an analog computer” [5]. 

Control signals that are sent towards selected qubits set the Hamiltonian path, thereby 

controlling the gate operations for a digital quantum computer. For gate-based systems, a 

configurable network is provided to support the interaction of qubits, while analog systems 

depend on richer interactions in qubits enabled through this layer. Strong isolation is required 

for high qubit fidelity. It limits connectivity as each qubit may not be able to directly interact 

with every other qubit. Therefore, we need to map computation to some specific architectural 

constraints provided by this layer. This shows that connection and operation fidelity are 

prime characteristics of the quantum data layer. In conventional computing systems, the 

control and data plane are based on silicon technology. Control of the quantum data plane 

needs different technology and is performed externally by separating control and 

measurement layers. Analog qubit information should be sent to the specific qubits. Control 

information is transmitted through (data plane) wires electronically, in some of the systems. 

Network communication is handled in a way that it retains high specificity, affecting only 

the desired qubits without influencing other qubits that are not related to the underlying 

operation. However, it becomes challenging when the number of qubits grows; therefore, 

the number of qubits in a single module is another core component of the quantum 

information plane. 

The Plane for Quantum Control and Measurement 

The role of the quantum plane is to convert digital signals received from the control 

processor. It defines a set of quantum operations that are performed in the quantum data 

plane on the qubits. It efficiently translates the data plane’s analog output of qubits to 

classical data (i.e., binary), which are easier to be handled by the control processor. Any 
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difference in the isolation of the signals leads to small qubit signals that cannot be fixed 

during an operation, thus resulting in inaccuracies in the states of qubits. Control signals 

shielding is complex, since such signals must be passed via the apparatus that is used for 

isolating the quantum data plane from the environment. This could be performed using 

vacuums, cooling, or through both required constraints. Signal crosstalk and qubit 

manufacturing errors gradually change with the configuration change in the system. Even if 

the underlying quantum system allows fast operations, the speed can still be limited by the 

time required to generate and send a precise pulse. 

Plane of Control and Host Processor 

This plane recognizes and invokes a series of quantum gate operations to be per- formed by 

the control and measurement plane. This set of steps implements a quantum algorithm via 

the host processor. The application should be custom-built, using specific functionalities of 

the quantum layer that are offered by the software tool stack. One of the critical 

responsibilities of the control processor plane is to provide an algorithm for quantum error 

correction. Conventional data processing techniques are used to perform different quantum 

operations that are required for error correction according to computed results. This 

introduces a delay that may slow down the quantum computer processing. The overhead can 

be reduced if the error correction is carried out in a comparable time to that of the time 

needed for the quantum operations. As the computational task increases with the machine 

size, the control processor plane would inevitably consist of more ele- ments for increasing 

computational load. However, it is quite challenging to develop a control plane for large-

scale quantum machines [6]. 

One technique to solve these challenges is to split the plane into components. The first 

component being a regular processor that can be tasked to run the quantum program, while 

the other component can be customized hardware to enable direct interaction with the 

measurement and control planes. It computes the next actions to be performed on the qubits 

by combining the controller’s output of higher-level instructions with the syndrome 

measurements. The key challenge is to design customized hardware that is both fast and 

scalable with machine size, as well as appropriate for creating high-level instruction 

abstraction. A low abstraction level is used in the control processor plane. It converts the 

compiled code into control- and measurement-layer commands. The user will not be able to 

directly interact with the control processor plane. Subsequently, it will be attached to the 

computing machine to fasten the execution of a few specific applications. Such kind of 

architectures have been employed in current computers that have accelerators for graphics, 

ML, and networking. These accelerators typically require a direct connection with the host 

processors and shared access to a part of their memory, which could be exploited to program 

the controller [7]. 

Quantum Computing and Artificial Intelligence 

Since the 1980s and 1990s, quantum computing and quantum algorithmics have experienced 

substantial advancements, including Feynman's foundational design for a quantum 

computer, Shor's quantum algorithms for number factorisation and discrete logarithms, as 
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well as quantum key distribution, which are pertinent to cryptography and cryptanalysis. 

Additionally, Grover's quantum algorithm for unordered search facilitates the identification 

of entries within data structures, and quantum pattern matching aids in locating substring 

occurrences within a string. In the domain of Quantum Machine Learning (QML), various 

initiatives have emerged at the intersection of Quantum Computing and Artificial 

Intelligence, including the quantum annealing algorithm for optimisation problems [24], 

quantum constraint satisfaction for 3-SAT problems [8], quantum adiabatic algorithms for 

NP-complete combinatorial optimisation [2], quantum Principal Component Analysis (PCA) 

for identifying principal components in datasets [3], the quantum k-NN algorithm for 

complexity reduction in clustering [6], and quantum training of Boltzmann machines and 

neural networks to exceed the theoretical performance of their binary equivalents [5]. These 

endeavours have facilitated more organised and concentrated study in the emerging domain 

of Quantum AI. 

Since Feynman's foundational blueprint in 1981, and the inaugural successful physical 

quantum computer by D-Wave in 2010, various physical implementations of quantum 

computers have been proposed, including quantum gate arrays, one-way quantum 

computers, adiabatic quantum computers, and topological quantum computers, culminating 

in the attainment of quantum supremacy in 2019 (Google Inc., 53 qubits), 2020 (USTC 

China, 76 qubits), and 2021 (IBM Eagle, 127 qubits). This milestone in quantum computing, 

in conjunction with significant advancements in other fields such as advanced AI techniques 

like Deep Learning, increased computational power and data accessibility, and High-

Performance Computing, has laid the groundwork for research into a forthcoming AI that 

enables quantum computers to learn from quantum information. This Quantum AI (QAI) 

would utilise advancements in several transformative technologies, including medical 

Magnetic Resonance Imaging (MRI), superconductors, quantum computing and 

communication, quantum cryptographic key distribution, and quantum measurement. This 

field, commonly known as quantum machine learning, exists at the convergence of artificial 

intelligence and quantum computing. Many of the preliminary strategies have focused on 

classical AI to diminish its computing complexity and accelerate learning processes [46]. 

Other studies have focused on quality control to devise alternate learning algorithms and 

facilitate improved solutions. The suggested solutions encompass quantum clustering [34], 

quantum autoencoders [9], and quantum reinforcement learning [1]. Nonetheless, these 

solutions have been suggested individually, devoid of a cohesive framework that facilitates 

a smooth transition from conventional AI to quantum AI and permits their collaboration 

throughout this process. 

Classical AI relies on information storage (data) and manipulation (algorithms), but quantum 

AI is underpinned by quantum information storage (quantum data) and manipulation 

(quantum algorithms). Quantum data manifests as quantum binary digits (qubits), but 

quantum algorithmics pertain to actions performed on qubits, such as quantum logic gates. 

Although qubits may be realised in several physical systems (e.g., trapped ions, spin qubits, 

resonant cavities, or semiconductor qubits), the quantum properties of matter in each are 

essential for quantum computing, offering distinct benefits. The properties encompass: 

quantum superposition, wherein qubit states exist concurrently as a combination of |0⟩ and 
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|1⟩ values [10]; decoherence, the dissipation of information from a quantum system to its 

environment [6]; collapse, the irreversible reduction of a superposed quantum state to a 

singular state [5]; entanglement, the correlation of two or more quantum particles, 

maintaining interdependent states despite significant separation [3]; and quantum tunnelling, 

the ability of quantum wave functions to traverse potential barriers [2]. Consequently, QAI 

must be supported by three components: data, methods, and a computational environment. 

This cohesive framework may enable researchers to create quantum artificial intelligence 

algorithms that modify data within the quantum domain, hence accelerating machine 

learning processes and using quantum computing features. Pioneering efforts in QML have 

yielded recommendations for algorithms aimed at addressing specific problems. Currently, 

there is an absence of a technical framework to organise the emerging subject of Quantum 

Artificial Intelligence (QAI) research, which would aid in the creation of novel QAI 

algorithms. Additionally, the challenge of converting binary data into quantum states and 

vice versa (quantization/dequantization) remains unresolved. Moreover, in the near future, 

conventional AI and quantum AI will coexist, necessitating a conceptual ecosystem within 

the AI research community that fosters cooperation and synergy between both methods, 

therefore smoothing the transition. To this end, the emerging discipline of QAI will confront 

the following essential challenges, as outlined in Table 1.  In the subsequent part, we examine 

the cutting-edge developments pertaining to QAI, focussing on the dimensions of data, 

algorithmics, and computational frameworks quantum artificial intelligence 

Data Dimension 

As previously stated, quantum computing (QC) relies on quantum information storage and 

manipulation through quantum binary digits (qubits) [16], as well as operations performed 

on qubits, such as quantum logic gates [51]. Qubits encode information distinctively from 

traditional two-state bits: in a qubit, both |0⟩ and |1⟩ values coexist simultaneously with a 

probability owing to superposition, until the state is collapsed by observation or 

measurement. The information representation capacity of qubits grows exponentially 

relative to binary representation [50]: a single qubit may concurrently represent two values, 

whilst N qubits can represent up to 2N values simultaneously, in contrast to N bits, which 

can represent just one of 2N values. In Quantum AI, the superposition of qubits and the 

concurrent operation on distinct points of a superposed qubit facilitate extensive parallel 

computations, presenting the potential to address complex problems that are currently 

impractical or demand excessive time and resources [9-18]. 

Table 1. Problems to be addressed by Quantum Artificial Intelligence. 

Scientific 

problem 

Description 

Input problem The cost of reading input data can potentially surpass the 

computational gain of quantum algorithms, limiting the obtained 

speed-up 
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Output problem To translate the output of quantum algorithms as a binary string, it is 

necessary to learn an exponential number of bits, which makes some 

applications of QAI unfeasible 

Noise problem Random fluctuations in quantum states propagate very fast and can 

lead to the complete loss of information, which is at the root of the 

large effort in quantum error correction. This is particularly relevant 

for QAI because it entails series of unitary operations on large data 

volumes: quantum errors could invalidate entire analyses 

Benchmarking 

problem 

Some incipient benchmarks exist for the assessment of quantum 

algorithmic performance in specific cases; however, there is a lack of 

a solid benchmarking framework for the evaluation of QAI 

performance in comparison to classical AI 

Costing problem While theoretical bounds suggest that QAI algorithms will offer big 

advantages in solving large problems, it is currently not possible to 

estimate the actual number of quantum gates required to create a 

quantum circuit for a given algorithm 

Computational Framework 

For instance, developing a computational framework tailored to Quantum Artificial 

Intelligence (QAI) that enables the coexistence and collaboration of classical and quantum 

AI processes, with the objective of facilitating a seamless transition between the two in the 

near future. 

Networks for Quantum Communications 

The use of different quantum states of light to complete specific communication tasks is the 

focus of quantum communication (QC), a subfield of quantum technologies. There has been 

a significant uptick in interest in the possibility of QC finding usage in business settings. 

Quantum random-number generation (QRNG) and quantum key distribution (QKD) are two 

of the most prominent QC technologies. Together, these features have the potential to enable 

the ideal secrecy protocol that can withstand external assaults, and QKD makes private 

communication possible by letting distant entities share a secret key. Building a quantum 

communication network that links quantum computers together to accomplish computation, 

synchronisation, and network security with quantum enhancements is the objective of the 

quantum Internet. The IETF's quantum Internet research group known as Qirg is in charge 

of the quantum Internet's standardisation efforts [19-27]. 

Quantum Communication on Higher Dimensions 

Contemporary trends in technology have had a significant impact on quantum information. 

It is clear from the research that high-dimensional quantum states, particularly in the context 

of quantum communication, are becoming more and more intriguing. A huge amount of 

information may be stored in Hilbert space, and it is also resistant to noise. A combination 
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of integrated photonics and bulk optics was also used by the authors to investigate "multiple 

photonic degrees of freedom for generating high-dimensional quantum states" in order for 

the quantum states to propagate, several channels were created, such as single-mode, free-

space connections, aquatic channels, multicore, and multimode fibres. 

How Quantum Computing Can Be Scaled 

Because the many-body Hilbert vector space of highly linked, constantly interacting 

quantum states grows with the number of particles, simulating such states is difficult. 

Applying transfer learning techniques is one of the most encouraging ways to increase 

scalability. The rule states that ML models may be reused to tackle various types of problems 

that are related but not identical. We can take use of transfer learning protocols influenced 

by physics by reusing aspects of the neural network's quantum states. 

Boltzmann machines, which are very basic neural networks, may accurately mimic the 

behaviour of many-body quantum systems, according to the validated results. In transfer 

learning, one task is taught on a smaller system and then applied to a bigger system using 

the same trained model. Here, scalability may be achieved via the application of transfer 

learning protocols influenced by several branches of physics. An further purpose for FPGAs 

is to simulate quantum computing algorithms, which can outperform software-based 

simulations in terms of performance. One major obstacle, however, is the amount of 

hardware power needed to simulate quantum systems. Scalable FPGA-based technologies 

may provide more scalability in this area [28-30]. 

Lack of Criticism 

Since the parts of a quantum computer are in a delicate entangled state, fault tolerance is 

crucial. This results in the high fidelity of quantum computations by making them resistant 

and introducing strategies to tackle quantum difficulties. This opens the door for quantum 

computers to do calculations that were previously intractable on classical computers. On the 

other hand, systems relying on such calculations would be severely impacted in the event of 

a qubit or measurement mechanism mistake during processing. There are serious problems 

with the method of mistake correction itself. Using auxiliary qubits to monitor qubits—

which continuously analyse logical faults for rectification and detection—is a possible 

technique to monitor these systems. While auxiliary qubits have shown some encouraging 

outcomes, it is important to be aware that faults in these components might cause errors in 

the qubits, which in turn can cause even more errors in the operation. Error the system might 

be able to fix the code when certain bits are incorrect if it is incorporated among the qubits. 

It aids in the propagation of faulty errors by making sure that a single defective gate or time 

stamp causes a single defective gate. 

Conclusion 

This document provides a comprehensive analysis of advancements at the intersection of 

Quantum Computing and Artificial Intelligence. We have highlighted the mutual advantages 

of Quantum Computing for Artificial Intelligence and vice versa, leading to the 

establishment of a novel scientific domain that integrates both fields, namely Quantum 
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Artificial Intelligence. We have identified the primary basic challenges encountered in QAI, 

along with prospective research avenues essential for fully realising the potential of QAI. 

This innovative scientific domain emerges as a very promising technology that is already 

yielding results, and we anticipate it will have a significant influence in the imminent future, 

owing to the forthcoming availability of medium-scale quantum computers. 
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