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ABSTRACT

Recently, Quantum Computing (QC) has garnered increasing attention due to significant
advancements in the development of functional quantum computers, quantum materials, and
quantum cryptography. In light of advancements in the physical construction and scaling of quantum
computers, it is imperative to promote the development of quantum algorithms and methodologies
tailored to these systems, maximising their inherent computational and communication capabilities.
In the age of Big Data, several computationally intensive activities are within the domain of Artificial
Intelligence (Al), encompassing those that are now computationally intractable owing to physical
constraints. The inherent parallelism, computational efficiency, and representational capacity of
quantum computing offers a superior alternative to binary computers, promising improved Al
models. The Quantum Artificial Intelligence (QAI) idea will enable the identification of patterns that
standard Al algorithms cannot detect, significantly reducing processing time by several orders of
magnitude. This paper delineates the scientific advancements at the intersection of artificial
intelligence and quality control. We commence by delineating both domains, fundamental concepts,
and the chronology of pivotal advancements in the history of Al and QC, subsequently concentrating
on the current study regarding the bidirectional methodologies wherein QC enhances Al and Al
augments QC. Ultimately, we delineate prospective research directions for the nascent field of QAI
and conclude.

Keywords: Quantum Artificial Intelligence; Avrtificial Intelligence; Quantum Computing; Al
Algorithms

Introduction

Since the onset of the 20th century, the exploration of quantum theory has led to the
development of quantum-based technologies, which are now influencing fields such as
encryption, superconductors, and quantum computing (QC). These technologies have
significant potential, providing enhancements in performance and viable solutions to
previously insurmountable challenges associated with alternative technologies [1]. During
the 1980s and 1990s, significant advancements in computation emerged, driven by quantum
phenomena. Notably, these advancements included (1) hardware developments, with the
recent milestone of quantum supremacy achieved by IBM's Eagle in November 2021,
demonstrating a quantum device's capability to solve problems unattainable by
contemporary binary computers; and (2) extensive initiatives in quantum computing
technologies, exemplified by the European Commission-funded Quantum Flagship, initiated
in 2018, aimed at creating a "Quantum Web" of interconnected quantum devices utilising
guantum communication networks to share resources. Consequently, the conditions are
ideally established for a significant progression in algorithmics that utilises quantum
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computational capabilities for complex issues, including those addressed by Artificial
Intelligence (Al) methodologies [2].

Nonetheless, quantum supremacy does not inherently imply superiority in intelligence. In
1945, John Von Neumann delineated his architecture, and in 1948, Alan Turing wrote his
renowned essay, Intelligent Machinery. Although the term ‘Artificial Intelligence’ was
introduced at the renowned Dartmouth conference in the summer of 1956, and there were
subsequent advancements in the field over the following decades, it was not until the late
1990s that Al proved effective in addressing real-world challenges, exemplified by Deep
Blue's victory over Kasparov. Artificial intelligence has become essential in nearly all facets
of civilisation. However, this does not apply to the more contemporary Quantum-based Al
or to Al-driven Quantum methodologies. Consequently, the Al research community must be
prepared in the short term to prevent a gap when the widespread adoption of quantum
computers materialises (Fig. 1).
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Figure 1. Chronology of developments in classical machines and classical artificial
intelligence compared to quantum machines and quantum artificial intelligence.

A Concise Overview of Quantum Computing

The term quantum computing was first coined by Richard Feynman in 1981 and has since
had a rich intellectual history. Figure 3 depicts a timeline of major events in this area.
Noteworthy in the timeline is that while there were somewhat larger gaps between events
earlier on, recently, the field has started experiencing a more rapid series of developments.
For example service providers have begun offering niche quantum computing products, as
well as quantum cloud computing services (e.g., Amazon Braket). Recently, Google’s 54-
qubit computer accomplished a task in merely 200 s that was estimated to take around over
10,000 years on a classical computing system [3]. Nevertheless, quantum computing is still
in its infancy stages, and it will take some time before quantum computing chips reach
desktops or handhelds. An important factor inhibiting the commoditization of quantum
computing is the fact that controlling quantum effects is a delicate process, and any noise
(e.g., stray heat) can flip 1s or Os and disrupt quantum effects, such as superposition. This
requires qubits to be fully operated under special conditions, such as very cold temperatures,
sometimes very close to absolute zero. This also motivates research exploring fault-tolerant
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guantum computing [4]. Considering this fast-paced development of quantum computing,
this is an opportune time for healthcare researchers and practitioners to investigate its
benefits to healthcare systems.

The Build of Hardware since traditional computing systems handle user data and network
components, it is ideal for a quantum computing system to be able to interface with and make
efficient use of traditional computing systems. In order to run efficiently, qubit systems need
to be controlled in a carefully orchestrated fashion, which can be handled using conventional
computing principles. To understand the hardware components of an analogue gate-based
guantum computing system, it is possible to map it into various layers. Each layer is
responsible for performing a different quantum operations and comprise the following: the
guantum control plane, the measurement plane, and the data plane. The control processor
plane, which supports the host processor and is responsible for network access, user
interfaces, and storage arrays, uses measurement outcomes to determine the algorithm's
required sequence of operations and measurements.

The Quantum Data Plane

It is the main component of the quantum computing ecosystem. It broadly consists of
physical qubits and the structures required to bring them into an organized system. It contains
support circuits required to identify the state of qubits and perform gated operations. It does
this for the gate-based system or controlling “the Hamiltonian for an analog computer” [5].
Control signals that are sent towards selected qubits set the Hamiltonian path, thereby
controlling the gate operations for a digital quantum computer. For gate-based systems, a
configurable network is provided to support the interaction of qubits, while analog systems
depend on richer interactions in qubits enabled through this layer. Strong isolation is required
for high qubit fidelity. It limits connectivity as each qubit may not be able to directly interact
with every other qubit. Therefore, we need to map computation to some specific architectural
constraints provided by this layer. This shows that connection and operation fidelity are
prime characteristics of the quantum data layer. In conventional computing systems, the
control and data plane are based on silicon technology. Control of the quantum data plane
needs different technology and is performed externally by separating control and
measurement layers. Analog qubit information should be sent to the specific qubits. Control
information is transmitted through (data plane) wires electronically, in some of the systems.
Network communication is handled in a way that it retains high specificity, affecting only
the desired qubits without influencing other qubits that are not related to the underlying
operation. However, it becomes challenging when the number of qubits grows; therefore,
the number of qubits in a single module is another core component of the quantum
information plane.

The Plane for Quantum Control and Measurement

The role of the quantum plane is to convert digital signals received from the control
processor. It defines a set of quantum operations that are performed in the quantum data
plane on the qubits. It efficiently translates the data plane’s analog output of qubits to
classical data (i.e., binary), which are easier to be handled by the control processor. Any
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difference in the isolation of the signals leads to small qubit signals that cannot be fixed
during an operation, thus resulting in inaccuracies in the states of qubits. Control signals
shielding is complex, since such signals must be passed via the apparatus that is used for
isolating the quantum data plane from the environment. This could be performed using
vacuums, cooling, or through both required constraints. Signal crosstalk and qubit
manufacturing errors gradually change with the configuration change in the system. Even if
the underlying quantum system allows fast operations, the speed can still be limited by the
time required to generate and send a precise pulse.

Plane of Control and Host Processor

This plane recognizes and invokes a series of quantum gate operations to be per- formed by
the control and measurement plane. This set of steps implements a quantum algorithm via
the host processor. The application should be custom-built, using specific functionalities of
the quantum layer that are offered by the software tool stack. One of the critical
responsibilities of the control processor plane is to provide an algorithm for quantum error
correction. Conventional data processing techniques are used to perform different quantum
operations that are required for error correction according to computed results. This
introduces a delay that may slow down the quantum computer processing. The overhead can
be reduced if the error correction is carried out in a comparable time to that of the time
needed for the quantum operations. As the computational task increases with the machine
size, the control processor plane would inevitably consist of more ele- ments for increasing
computational load. However, it is quite challenging to develop a control plane for large-
scale quantum machines [6].

One technique to solve these challenges is to split the plane into components. The first
component being a regular processor that can be tasked to run the quantum program, while
the other component can be customized hardware to enable direct interaction with the
measurement and control planes. It computes the next actions to be performed on the qubits
by combining the controller’s output of higher-level instructions with the syndrome
measurements. The key challenge is to design customized hardware that is both fast and
scalable with machine size, as well as appropriate for creating high-level instruction
abstraction. A low abstraction level is used in the control processor plane. It converts the
compiled code into control- and measurement-layer commands. The user will not be able to
directly interact with the control processor plane. Subsequently, it will be attached to the
computing machine to fasten the execution of a few specific applications. Such kind of
architectures have been employed in current computers that have accelerators for graphics,
ML, and networking. These accelerators typically require a direct connection with the host
processors and shared access to a part of their memory, which could be exploited to program
the controller [7].

Quantum Computing and Artificial Intelligence

Since the 1980s and 1990s, quantum computing and quantum algorithmics have experienced
substantial advancements, including Feynman's foundational design for a quantum
computer, Shor's quantum algorithms for number factorisation and discrete logarithms, as
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well as quantum key distribution, which are pertinent to cryptography and cryptanalysis.
Additionally, Grover's quantum algorithm for unordered search facilitates the identification
of entries within data structures, and quantum pattern matching aids in locating substring
occurrences within a string. In the domain of Quantum Machine Learning (QML), various
initiatives have emerged at the intersection of Quantum Computing and Artificial
Intelligence, including the quantum annealing algorithm for optimisation problems [24],
guantum constraint satisfaction for 3-SAT problems [8], quantum adiabatic algorithms for
NP-complete combinatorial optimisation [2], quantum Principal Component Analysis (PCA)
for identifying principal components in datasets [3], the quantum k-NN algorithm for
complexity reduction in clustering [6], and quantum training of Boltzmann machines and
neural networks to exceed the theoretical performance of their binary equivalents [5]. These
endeavours have facilitated more organised and concentrated study in the emerging domain
of Quantum Al.

Since Feynman's foundational blueprint in 1981, and the inaugural successful physical
guantum computer by D-Wave in 2010, various physical implementations of quantum
computers have been proposed, including quantum gate arrays, one-way quantum
computers, adiabatic quantum computers, and topological quantum computers, culminating
in the attainment of quantum supremacy in 2019 (Google Inc., 53 qubits), 2020 (USTC
China, 76 qubits), and 2021 (IBM Eagle, 127 qubits). This milestone in quantum computing,
in conjunction with significant advancements in other fields such as advanced Al techniques
like Deep Learning, increased computational power and data accessibility, and High-
Performance Computing, has laid the groundwork for research into a forthcoming Al that
enables quantum computers to learn from quantum information. This Quantum Al (QAI)
would utilise advancements in several transformative technologies, including medical
Magnetic Resonance Imaging (MRI), superconductors, quantum computing and
communication, quantum cryptographic key distribution, and quantum measurement. This
field, commonly known as quantum machine learning, exists at the convergence of artificial
intelligence and quantum computing. Many of the preliminary strategies have focused on
classical Al to diminish its computing complexity and accelerate learning processes [46].
Other studies have focused on quality control to devise alternate learning algorithms and
facilitate improved solutions. The suggested solutions encompass quantum clustering [34],
guantum autoencoders [9], and quantum reinforcement learning [1]. Nonetheless, these
solutions have been suggested individually, devoid of a cohesive framework that facilitates
a smooth transition from conventional Al to quantum Al and permits their collaboration
throughout this process.

Classical Al relies on information storage (data) and manipulation (algorithms), but quantum
Al is underpinned by quantum information storage (quantum data) and manipulation
(quantum algorithms). Quantum data manifests as quantum binary digits (qubits), but
guantum algorithmics pertain to actions performed on qubits, such as quantum logic gates.
Although qubits may be realised in several physical systems (e.g., trapped ions, spin qubits,
resonant cavities, or semiconductor qubits), the quantum properties of matter in each are
essential for quantum computing, offering distinct benefits. The properties encompass:
guantum superposition, wherein qubit states exist concurrently as a combination of |0) and
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|1) values [10]; decoherence, the dissipation of information from a quantum system to its
environment [6]; collapse, the irreversible reduction of a superposed quantum state to a
singular state [5]; entanglement, the correlation of two or more quantum particles,
maintaining interdependent states despite significant separation [3]; and quantum tunnelling,
the ability of quantum wave functions to traverse potential barriers [2]. Consequently, QAI
must be supported by three components: data, methods, and a computational environment.
This cohesive framework may enable researchers to create quantum artificial intelligence
algorithms that modify data within the quantum domain, hence accelerating machine
learning processes and using quantum computing features. Pioneering efforts in QML have
yielded recommendations for algorithms aimed at addressing specific problems. Currently,
there is an absence of a technical framework to organise the emerging subject of Quantum
Acrtificial Intelligence (QAI) research, which would aid in the creation of novel QAI
algorithms. Additionally, the challenge of converting binary data into quantum states and
vice versa (quantization/dequantization) remains unresolved. Moreover, in the near future,
conventional Al and quantum Al will coexist, necessitating a conceptual ecosystem within
the Al research community that fosters cooperation and synergy between both methods,
therefore smoothing the transition. To this end, the emerging discipline of QAI will confront
the following essential challenges, as outlined in Table 1. In the subsequent part, we examine
the cutting-edge developments pertaining to QAI, focussing on the dimensions of data,
algorithmics, and computational frameworks quantum artificial intelligence

Data Dimension

As previously stated, quantum computing (QC) relies on quantum information storage and
manipulation through quantum binary digits (qubits) [16], as well as operations performed
on qubits, such as quantum logic gates [51]. Qubits encode information distinctively from
traditional two-state bits: in a qubit, both |0) and |1) values coexist simultaneously with a
probability owing to superposition, until the state is collapsed by observation or
measurement. The information representation capacity of qubits grows exponentially
relative to binary representation [50]: a single qubit may concurrently represent two values,
whilst N qubits can represent up to 2N values simultaneously, in contrast to N bits, which
can represent just one of 2N values. In Quantum Al, the superposition of qubits and the
concurrent operation on distinct points of a superposed qubit facilitate extensive parallel
computations, presenting the potential to address complex problems that are currently
impractical or demand excessive time and resources [9-18].

Table 1. Problems to be addressed by Quantum Atrtificial Intelligence.

Scientific Description
problem

Input problem  [The cost of reading input data can potentially surpass the
computational gain of quantum algorithms, limiting the obtained
speed-up
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Output problem [To translate the output of quantum algorithms as a binary string, it is
necessary to learn an exponential number of bits, which makes some
applications of QAI unfeasible

Noise problem  Random fluctuations in quantum states propagate very fast and can
lead to the complete loss of information, which is at the root of the
large effort in quantum error correction. This is particularly relevant
for QAI because it entails series of unitary operations on large data
volumes: quantum errors could invalidate entire analyses

Benchmarking  |Some incipient benchmarks exist for the assessment of quantum
problem algorithmic performance in specific cases; however, there is a lack of
a solid benchmarking framework for the evaluation of QAI
performance in comparison to classical Al

Costing problem (While theoretical bounds suggest that QAI algorithms will offer big
advantages in solving large problems, it is currently not possible to
estimate the actual number of quantum gates required to create a
guantum circuit for a given algorithm

Computational Framework

For instance, developing a computational framework tailored to Quantum Artificial
Intelligence (QAI) that enables the coexistence and collaboration of classical and quantum
Al processes, with the objective of facilitating a seamless transition between the two in the
near future.

Networks for Quantum Communications

The use of different quantum states of light to complete specific communication tasks is the
focus of quantum communication (QC), a subfield of quantum technologies. There has been
a significant uptick in interest in the possibility of QC finding usage in business settings.
Quantum random-number generation (QRNG) and quantum key distribution (QKD) are two
of the most prominent QC technologies. Together, these features have the potential to enable
the ideal secrecy protocol that can withstand external assaults, and QKD makes private
communication possible by letting distant entities share a secret key. Building a quantum
communication network that links quantum computers together to accomplish computation,
synchronisation, and network security with quantum enhancements is the objective of the
guantum Internet. The IETF's quantum Internet research group known as Qirg is in charge
of the quantum Internet's standardisation efforts [19-27].

Quantum Communication on Higher Dimensions

Contemporary trends in technology have had a significant impact on quantum information.
It is clear from the research that high-dimensional quantum states, particularly in the context
of quantum communication, are becoming more and more intriguing. A huge amount of
information may be stored in Hilbert space, and it is also resistant to noise. A combination
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of integrated photonics and bulk optics was also used by the authors to investigate "multiple
photonic degrees of freedom for generating high-dimensional quantum states™ in order for
the quantum states to propagate, several channels were created, such as single-mode, free-
space connections, aquatic channels, multicore, and multimode fibres.

How Quantum Computing Can Be Scaled

Because the many-body Hilbert vector space of highly linked, constantly interacting
quantum states grows with the number of particles, simulating such states is difficult.
Applying transfer learning techniques is one of the most encouraging ways to increase
scalability. The rule states that ML models may be reused to tackle various types of problems
that are related but not identical. We can take use of transfer learning protocols influenced
by physics by reusing aspects of the neural network's quantum states.

Boltzmann machines, which are very basic neural networks, may accurately mimic the
behaviour of many-body quantum systems, according to the validated results. In transfer
learning, one task is taught on a smaller system and then applied to a bigger system using
the same trained model. Here, scalability may be achieved via the application of transfer
learning protocols influenced by several branches of physics. An further purpose for FPGAs
is to simulate quantum computing algorithms, which can outperform software-based
simulations in terms of performance. One major obstacle, however, is the amount of
hardware power needed to simulate quantum systems. Scalable FPGA-based technologies
may provide more scalability in this area [28-30].

Lack of Criticism

Since the parts of a quantum computer are in a delicate entangled state, fault tolerance is
crucial. This results in the high fidelity of quantum computations by making them resistant
and introducing strategies to tackle quantum difficulties. This opens the door for quantum
computers to do calculations that were previously intractable on classical computers. On the
other hand, systems relying on such calculations would be severely impacted in the event of
a qubit or measurement mechanism mistake during processing. There are serious problems
with the method of mistake correction itself. Using auxiliary qubits to monitor qubits—
which continuously analyse logical faults for rectification and detection—is a possible
technique to monitor these systems. While auxiliary qubits have shown some encouraging
outcomes, it is important to be aware that faults in these components might cause errors in
the qubits, which in turn can cause even more errors in the operation. Error the system might
be able to fix the code when certain bits are incorrect if it is incorporated among the qubits.
It aids in the propagation of faulty errors by making sure that a single defective gate or time
stamp causes a single defective gate.

Conclusion

This document provides a comprehensive analysis of advancements at the intersection of
Quantum Computing and Artificial Intelligence. We have highlighted the mutual advantages
of Quantum Computing for Artificial Intelligence and vice versa, leading to the
establishment of a novel scientific domain that integrates both fields, namely Quantum
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Artificial Intelligence. We have identified the primary basic challenges encountered in QAI,
along with prospective research avenues essential for fully realising the potential of QAL
This innovative scientific domain emerges as a very promising technology that is already
yielding results, and we anticipate it will have a significant influence in the imminent future,
owing to the forthcoming availability of medium-scale quantum computers.
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