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ABSTRACT

Oracle Database (ODB) offers significant acceleration for analytic queries with its highly
compressed, transactionally consistent, memory-optimized Column Store. Customers may utilize
Oracle ODB to make real-time judgments by evaluating extensive data sets at remarkable rates.
Active Data Guard (ADG) is Oracle's all-encompassing solution for high availability and disaster
recovery of the Oracle Database. Oracle ADG mitigates the substantial expense of idle redundancy
by enabling reporting applications, ad-hoc queries, and data extracts to be delegated to the
synchronized, physical Standby database duplicated via Oracle ADG. In Oracle 12.2, we expanded
the ODB benefit to the Oracle ADG architecture. ODB-on-ADG markedly enhances the performance
of analytic, read-only workloads executed on the physical Standby database, while the Primary
database persists in managing high-velocity OLTP workloads. Customers may distribute their data
across the In-Memory Column Stores on both the Primary and Standby databases according to
access patterns, so achieving fault tolerance and workload segregation without sacrificing essential
performance SLAs. This study examines the principal issues associated with constructing the ODB-
on-ADG architecture, particularly the synchronized maintenance of the In-Memory Column Store
on the Standby database, amid ongoing high-speed OLTP activity that continually alters data on the
Primary database.

Keywords: Data Guard Configuration, Active Data Guard, Data Replication, Real-time Data
Synchroniztion, Data Guard Broker, Real-Time Data Protection, Standby Database
Analytics, Real-Time Querying, Data Guard Snapshot Standby, Zero Data Loss, Read-
Only Standby database, Real-Time Data.

Introduction

Oracle Active Data Guard (ADG) offers active-standby replication for the Oracle Database.
The Standby database is a synchronized, physical replica of the Primary database, usually
located at a distant site. The Primary interacts with the Standby database using a network
protocol such as TCP/IP. The Standby database is crucial for disaster recovery, usually
trailing the Primary database by sub-second latency, thereby offering nearly real-time, read-
only access to database items. Sub-second delays are acceptable for many reporting systems
that handle extensive datasets, such as Big Data analytics. Transferring read-only workloads
to the Standby database alleviates CPU use on the Primary (Production) database for OLTP
and segregates batch reporting demands from live operations [3]. This study elucidates the
enhancement of ODB functionality [12] inside the Oracle ADG architecture, enabling
analytic tasks offloaded to the Standby database to execute with much improved speed. The
ODB-on-ADG architecture facilitates the independent scalability of both Primary and
Standby databases using Oracle Real Application Clusters (RAC), granting enterprise-scale
clients complete autonomy in augmenting their OLTP or read-only workloads [1-5].
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Capacity Expansion Capability: When the In-Memory Column Store (IMCS) is setup for
both Primary and Standby databases, the data contained inside the IMCS of the two databases
may consist of entirely distinct sets of objects. This method efficiently enlarges the IMCS.
In a standard setup, clients can establish three services: Standby-only, Primary-only, and
Primary-and-Standby utilizing Oracle’s Services Infrastructure [7]. Figure 2 illustrates that
the most recent month of the SALES fact table data is stored in the Primary instance’s IMCS,
while the complete year's SALES data is retained in the Standby instance for analytical
purposes. The dimension tables may be loaded in both cases to enhance join processing
efficiency. For each partition of SALES data, the customer designates either the standby or
primary service, and for each dimension table, the client selects a service including both
primary and standby database instances. Customers may accomplish workload separation
with the IMCS capacity extension feature of the ODB-on-ADG architecture, therefore
benefiting from accelerated analytics for workloads executed on both instances [6-16].

The Oracle ADG's distinctive replication architecture required a redesign of essential
elements within the Oracle ODB infrastructure, particularly those responsible for populating
data in the IMCS and ensuring its transactional integrity. A significant issue in building the
ODB-on-ADG architecture was to preserve the primary advantage of ADG — its catastrophe
recoverability. The recoverability from disaster is contingent upon the rapidity with which
the Standby database can synchronize with the redo logs generated by the Primary database.
Consequently, the ODB-on-ADG infrastructure is engineered to impose minimal overhead
on the ADG architecture. The approach executes minimum processing on crucial pathways
and leverages the extensive parallelism utilized by the Oracle ADG architecture.

This article is structured as follows: Section Il presents an introduction of Oracle ADG and
Database In-Memory; Section |11 elucidates the ODB-on-ADG architecture and the design
of its components; Section IV offers performance findings; and Section V finishes with a
discussion of future work.

An Overview of Oracle ADG and ODB Architectures
Summary of Oracle ADG Architecture

Oracle ADG offers active-standby replication for the Oracle Database. The replica, referred
to as the Standby database, is a synchronized, physical duplicate of the Primary database,
preserved by Redo Apply (also known as Media Recovery) [6].

Redo logs transmitted from the Primary database encompass redo records, which may be
produced by many Oracle database instances (utilizing Oracle RAC [9]). A redo record may
include numerous Redo Change Vectors (CVs), each corresponding to a specific database
block indicated by the Database Block Address (DBA). All CVs in aredo record are deemed
to have been produced at the identical SCN (System Change Number), which signifies the
database timestamp when alterations were executed on the database blocks. Every CV is
assigned a transaction identification. It is essential to recognize that the SCN linked to a redo
record may not correspond to the database time at which the transaction commits
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(commitSCN). The commitSCN is, indeed, the SCN linked to a ‘commit’ CV, which is
utilized for a certain block. In the Standby instance, a Log Merger procedure organizes the
redo data according to their SCN. The SCN-ordered logs may be utilized to apply to the
respective database blocks, therefore generating a physical replica of the underlying datafiles
on the Standby database. Upon the application of all CVs up to a certain SCN value, the
Standby database is deemed to have synchronized with the Primary database at that SCN.
This represents the most basic iteration of redo application [17-27].

Logs on the Primary database may be produced by several simultaneous transactions. The
serialization of log application to the Standby database can significantly impede redo
application, hence exacerbating the latency between the Primary and Standby databases.
This undermines the primary objective of the Standby Database — catastrophe recovery.
Consequently, the redo apply process is extensively parallelized for Oracle ADG by
allocating the SCN-ordered collection of CVs among recovery worker processes via a
hashing mechanism. Figure 3 illustrates the overarching architecture of Parallelized Redo
Apply. Each DBA is mapped to a specific recovery worker identification, enabling a
recovery worker process to autonomously process its allocated CVs and apply them to
database blocks in SCN order.

While parallelization accelerates redo application, it presents a possible issue of transactional
inconsistency. Due to the varying rates at which recovery workers may apply the change
vectors, the transactional sequence of modifications on the Standby database may be
disrupted. In Figure 3, recovery worker 1 continues to implement the CV from SCN 100, but
recovery worker N has advanced and is utilizing the CV from SCN 110, which incorporates
a modification to the database at a subsequent time. If the modifications to DBA 7 and DBA
150 constitute a single transaction, the alteration to DBA 150 must remain imperceptible to
gueries until the modification to DBA 7 is likewise perceptible, in accordance with the
atomicity feature of transactions. A centralized coordinator must ensure awareness of the
implemented changes on the Standby database, leading us to the notion of QuerySCN in
Active Data Guard (ADG).

A recovery coordinator process monitors the advancement of all recovery worker processes
and sets a consistency point at which all workers have finalized the redo application. The
consistency point is identified as the 'QuerySCN' on ADG. The QuerySCN functions as the
Consistent Read (CR) snapshot for queries performed on the Standby database, until a more
recent consistency point (i.e., a higher QuerySCN) is created by the

Recovery Coordinator. Due to the varying speeds at which recovery worker processes apply
redo, the QuerySCN on ADG often exhibits leapfrogging rather than a continuous sequence
of successive SCNEs.

Specific elements of the ODB-on-ADG architecture are intentionally placed to create a
uniform consistency point for the IMCS. This allows queries executed at the QuerySCN to
utilize the IMCS on the Standby Database. Section Il examines these elements and their
positioning comprehensively [28-41].
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Summary of Oracle Database

Row-stores are optimal for OLTP workloads, where transactions engage a limited number
of rows but several columns inside each row, whereas column stores are appropriate for
analytic workloads that often access a vast number of rows, but only a few columns per row.
Oracle ODB [12] implemented a dual-format architecture that preserves two versions of
identical data: the conventional row-format on-disk and a columnar format in the IMCS. The
ODB Transaction Manager maintains consistency between the column store and the current
transactional activities in the row store. Oracle ODB is therefore designed to accelerate
mixed-OLTP workloads that execute transaction processing and analytic queries.

The IMCS data consists of read-only In-Memory Columnar Units (IMCUs). IMCUs utilize
methods like as data compression and encoding to optimize the packing of the IMCS. The
In-Memory Scan Engine utilizes techniques like as SIMD vector processing, in-memory
storage indexes, and efficient predicate evaluation and aggregation to enhance the
performance of analytic queries. Data loading in the IMCS, referred to as Population, is often
executed as a background process and does not impact concurrent transactions and queries.
The population creates a snapshot SCN for each IMCU, and the IMCU is populated with
data that aligns with the snapshot SCN according to Oracle's Consistent Read (CR)
paradigm.

Upon loading, data in the IMCUs is synced with active transaction processing using specific
methodologies. A Snapshot Metadata Unit (SMU) is associated with each IMCU and
monitors the integrity of the data contained inside its related IMCU at many levels of
granularity: block level, row level, and column level. The In-Memory Scan Engine
synchronizes the IMCU data with the SMU to guarantee that incorrect or outdated data is
not retrieved from the IMCS, but rather from the database buffer cache (i.e., the row-store).
As transactions continue to alter the underlying row-store, an increasing proportion of the
data in an IMCU becomes invalid over time. The repopulation approach is utilized to update
the data in an IMCU with a more recent snapshot SCN, hence optimizing query speed when
scanning the IMCS. Repopulation, like to population, is entirely online, transparent to
queries and transactions interfacing with the IMCU, and is executed as a background process.
A collection of heuristics is employed to initiate repopulation and adjust the repopulation
frequency of each IMCU.

Besides ensuring consistency guarantees for data within IMCUs, SMUs facilitate
concurrency management and synchronize processes such as repopulation, scanning, and
removal of IMCUs. Figure 4 depicts a comprehensive overview of the ODB architecture,
highlighting access patterns for various components.

ODB-on-ADG Infrastructure

The Standby database does continuous redo application and generates consistency points
that ensure queries provide consistent results. The ODB-on-ADG architecture utilizes
specialized components to populate the IMCS and preserve its transactional consistency at
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certain consistency points. Figure 5 illustrates the principal components of the ODB-on-
ADG system [42-53].

The ODB-on-ADG infrastructure engages with the QuerySCN progression on the Standby
database to get a consistent snapshot SCN for the IMCS population. Upon population, the
transactional consistency of the IMCS is kept via strategically located components:

The Mining Component leverages recovery workers to detect changes to items within the
IMCS. The metadata extracted by the Mining Component is stored in the In-Memory ADG
(IM-ADG) Journal. The Invalidation Flush Component transmits this metadata to SMUs
during QuerySCN progression, therefore rendering updated data in the IMCUs invalid.

Nuanced improvements to the previously described components enable ODB-on-ADG
architecture to expand effortlessly over ADG-RAC and accommaodate schema modifications.
Moreover, specific redo generation may be utilized on the Primary database to maintain the
consistency of IMCS during ADG instance restarts. The subsequent subsections elucidate
the function and design of these components comprehensively.

Population of the IMCS on ADG

The IMCS population in the Standby database, like to that in the Primary database, is
engineered to remain entirely online and does not impede continuous queries on the IMCS.
A segment loader divides an object into data block ranges, while background population
worker processes create IMCUs for the DBA ranges. Queries and redo application on the
Standby continue uninterrupted throughout the populating of the IMCS.

In contrast to the Primary database, the Standby database disseminates distinct consistency
points that align with the QuerySCNs. Consequently, the snapshot SCN of an IMCU is
invariably the QuerySCN determined at that moment. This is crucial because the population
infrastructure may experience a transient state of the database if it selects a snapshot that is
not a consistency point. Synchronization is essential between the recovery coordinator
disseminating a fresh QuerySCN and the population infrastructure recording the snapshot
SCN. This is accomplished via the 'Quiesce Period' on the Standby Database. Prior to
publishing a new QuerySCN, the recovery coordinator acquires the 'Quiesce lock' to signify
the commencement of the Quiesce Period on the instance. The population infrastructure is
prohibited from capturing the snapshot SCN for IMCUs during the Quiesce Period. Upon
the publication of the new QuerySCN, the Quiesce Period concludes, allowing the
population infrastructure to acquire the snapshot SCN for IMCUs. Background procedures
inside the population infrastructure verify the conclusion of the Quiesce Period and maintain
the Quiesce lock while recording the snapshot SCN for an IMCU.

Upon populating the IMCUs in the Standby database instance, the query engine operating
on the Standby database—identical to that of the Primary database—can leverage all
optimizations and methodologies devised by the In-Memory Scan Engine to scan the IMCS,
thereby delivering exceptionally rapid query responses. The subsequent primary objective is
to maintain the IMCS on the Standby database in alignment with the consistency point or
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QuerySCN being disseminated, ensuring that queries get the most current and consistent
results.

Mining Element

Recovery personnel on the Standby database (ADG) implement Redo Change Vectors (CVs)
to the foundational data blocks. The ODB-on-ADG Mining Component leverages the
recovery workers to detect each CV. When the CV alters an object designated for loading in
the IMCS on the Standby database, a tuple comprising the Object Identifier, Data Block
Identifier (DBA), and the list of modified rows inside the data block is recorded in the IM-
ADG Journal. Given that ODB-on-ADG operates with Oracle Database facilitating multi-
tenant applications, the tuple further comprises tenant information. Each tuple extracted from
analyzing a CV is referred to as a 'Invalidation Record' (refer to Figure 6). As modifications
to the data blocks are this tuple is tagged with its transaction identifier, ensuring atomicity at
transaction borders.

Besides extracting alterations to the data within the IMCS, ODB-on-ADG methods must also
extract certain control information. Every transaction possesses a distinct commit point, or
commitSCN, at which the alterations of a transaction are deemed atomic, persistent, and
accessible to queries in accordance with Oracle’s Consistent Read model. The IMCS on the
Standby database must also comply with these promises. Consequently, the ODB-on-ADG
Mining Component extracts control information regarding transactions — namely.
Transaction state transitions, including Transaction Begin, Prepare, Commit, and Abort,
along with the corresponding commitSCN for each transaction. Invalidation records are
linked to this control information via the Transaction Identifier.

One may naturally inquire, "Why cannot an invalidation record be promptly flushed to the
SMU following its construction?"The SMU must document this information to ensure
transactional consistency of the IMCUs. The rationale for postponing the flush is twofold.
Initially, because the populating of an IMCU occurs as a background process, independent
of the redo application, it is plausible that the corresponding SMU has not yet been
established. Secondly, even if the SMU is present, prematurely purging the invalidation
records results in the exposure of a transaction's alterations prior to its commitSCN.
Although this may appear to be a precautionary measure, certain processes are necessary to
ensure the SMU's persistence and retention of the invalidation information until the
QuerySCN on Standby aligns with the transaction's commitSCN. Given that population and
repopulation occur in the background in an entirely online fashion, it is exceedingly
challenging to offer such assurances.

To avert these occurrences, ODB-on-ADG protocols save invalidation entries in a 'IM-ADG
Journal' and thereafter transmit them to the SMUs at an ideal juncture.

IM-ADG Journal to Cache the Invalidation Records
The IM-ADG Journal enables the documentation and storage of invalidation entries
extracted by the ODB-on-ADG Mining Component. The IM-ADG Journal is intended to
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operate in conjunction with the massively parallel redo apply, while preserving the principle
that modifications must be atomic at transaction borders.

The fundamental architecture of the IM-ADG Journal comprises an in-memory hash table
that associates a transaction identifier with its invalidation data. The hash table is
dimensioned according to the degree of parallelism utilized by the ADG design to minimize
conflict among the recovery worker processes.

Nevertheless, with an exceedingly high transaction throughput on the Primary database,
some chaining in the hash buckets may be observed. The resultant hash chains are
safeguarded by a 'bucket lock' to synchronize several recovery worker processes functioning
on the same hash bucket. Figure 7 illustrates the overarching architecture of the IM-ADG
Journal.

Each hashbucket has hashtable nodes that function as the anchor for invalidation records
originating from a transaction. It is crucial to uphold transaction atomicity guarantees—
either all modifications of a transaction must be accessible to a query, or none should be.
Upon the creation of an anchor node for a transaction, each recovery worker is allocated a
designated section within the anchor node to store the invalidation records it generates. This
eliminates the necessity for synchronization among several recovery workers processing
invalidation records for a transaction, which is a frequent occurrence. Figure 7 illustrates the
storage of mined invalidation entries for transactions T1 and T2 within the IM-ADG Journal.
T3 now lacks invalidation records; nonetheless, the anchor node would have been
established upon the mining of the matching 'transaction begin' (control operation) by a
recovery worker.

Advancement of QuerySCN and Invalidation Flush to SMU

When the Standby database is prepared to progress the QuerySCN to establish a more recent
consistency point, the invalidation records collected in the IM-ADG Journal must be
transmitted to the SMUs, but only if the transaction that generated those changes has a
commitSCN that is less than or equal to the new QuerySCN. The IM-ADG Journal maintains
distinct invalidation entries for each transaction, rendering this procedure straightforward.
Nonetheless, a transaction may alter data across several IMCUs, necessitating the mapping
of invalidation records to the relevant SMUs to facilitate a cost-effective flush operation.
The Invalidation Flush Component does this by categorizing the invalidation data into
‘Invalidation groups.' The recovery coordinator progressing the QuerySCN purges the
invalidation groups to pertinent SMUs prior to disseminating the updated QuerySCN.
Consequently, any queries executed at the new QuerySCN will render the associated data in
the IMCU invalid.

Although this appears to be a simple procedure, it can result in considerable lag in publishing
the new QuerySCN if the recovery coordinator does this task independently and sequentially.
As stated in Section 1A, the Primary database produces logs in a multi-threaded fashion,
executing hundreds of transactions per second, resulting in a rapid advancement of the SCN
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on the Primary database. Consequently, the Standby database must rapidly elevate the
consistency point to ever higher QuerySCNs. Any delay in creating the QuerySCN
jeopardizes the Standby database's synchronization, hence compromising its failover
capabilities. The Invalidation Flush is therefore on the critical path, making the optimization
of this procedure essential.

The ODB-on-ADG architecture utilizes two primary methods to minimize the latency of
Invalidation Flush during QuerySCN progression. A assistance structure known as the 'IM-
ADG Commit Table' is established to facilitate rapid access to the IM-ADG Journal.
Secondly, the recovery personnel are reassigned to execute a highly parallelized,
collaborative flushing operation.

The ODB-on-ADG Mining Component preserves an in-memory, ordered linked list of
transaction IDs and their corresponding commit SCN in the IM-ADG Commit Table. When
specific control information on a transaction is extracted — namely. A 'Commit Table node'
is generated during a transaction commit or transaction preparation. The Commit Table node
includes the transaction identification and associated commitSCN, and is added into the
linked list, which is organized by commitSCN. The Commit Table node directly references
the anchor node in the IM-ADG Journal, which holds the transaction's invalidation entries.

When a new consistency point must be established, the ODB-on-ADG Invalidation Flush
Component utilizes the recovery coordinator process to truncate the Commit Table and
generate a Worklink (refer to Figure 8). All nodes in the worklink include transaction 1Ds
for transactions that must be ‘flushed' to the SMUs prior to the publication of the new
consistency point. The Invalidation Flush Component does this by securing direct access to
the IM-ADG Journal anchor node via the worklink. It collects all invalidation records for
each transaction, organizes them into invalidation groups according to the DBA ranges for
IMCUs, and transmits them to the corresponding SMUs.

To mitigate the bottleneck of insertion into a singular, sorted linked list by the Mining
Component, the IM-ADG Commit Table may be partitioned to generate humerous sorted
linked lists. A worklink is generated for each sorted list during the progress of QuerySCN.

Collaborative Flush:

Once the worklink is established, the invalidation records for various transactions inside the
worklink may be parallelized with ease. The ODB-on-ADG Invalidation Flush Component
employs recovery workers to facilitate this process, executing a 'Cooperative Flush.'
Moreover, recovery personnel

During the execution of the redo apply task, periodically verify the creation of a worklink.
If a worklink exists, the recovery workers assist the recovery coordinator in flushing a batch
of nodes from the worklink prior to proceeding with redo application. The recovery
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coordinator establishes the worklink, monitors its advancement, and disseminates the target
QuerySCN as the new consistency point when the worklink has been depleted.

Specialized Redo Generation in the Primary Database

The Primary database remains largely indifferent to the existence of the IMCS on the
Standby database, so no additional overheads are incurred when a transaction produces CVs
to alter data on the Primary database. Nonetheless, an exception exists to this rule. Special
redo generation may be executed on the Primary database by annotating the Commit Record
of a transaction with a flag that signifies if the transaction altered any object designated for
inclusion in the IMCS. This paragraph elucidates the utilization of this flag inside the ODB-
on-ADG infrastructure.

The redo application on ADG is entirely independent of the Primary database. The database
administrator may enable or disable redo apply on ADG and can arbitrarily shut down and
restart the Standby database instances. ADG procedures retain sufficient state to facilitate
recovery in such instances. Nevertheless, due to the IMCS lacking a permanent footprint
aside from the foundational row-store objects, ODB-on-ADG components forfeit all their
state upon instance restart. A transaction may be partially mined during a recovery session,
after which the Standby database instance can be shut down and restarted, with the
transaction commit information subsequently mined in a later session. If the commit SCN of
the transaction exceeds the snhapshot SCN of an IMCU, the invalidation records of the
transaction must be sent to the corresponding SMU. The Commit Record of the transaction
contains a flag to signify if any invalidation records are anticipated for this transaction. If
they are, and the IM-ADG Journal contains none or just a partial set of invalidation data
(indicated by the absence of a 'transaction begin' control information record), the Invalidation
Flush Component employs a coarse invalidation technique to label all IMCUs for the
designated renter as 'invalid." Designating an IMCU as invalid prevents queries from
accessing it until it is replenished.

Coarse invalidation causes considerable delay, but it occurs just when the Standby database
instance is restarted. Therefore, if the populating of the IMCS is delayed briefly upon
instance restart, we do not anticipate any coarse invalidation. It is important to acknowledge
that special redo generation is not strictly necessary. ODB-on-ADG may conservatively
presume that each transaction altered an object in the IMCS and initiate broad invalidation
upon the detection of a missing ‘transaction begin'. Nonetheless, to ensure optimal query
speed, it is advisable to avoid initiating coarse invalidation.

Oracle Database on Oracle Data Guard with Real Application Clusters

Primary and Standby databases may be scaled autonomously with Oracle Real Application
Clusters (RAC). Oracle Database In-Memory effortlessly scales over RAC, with IMCUs
allocated across the IMCS on several Oracle RAC instances according to a hashing
algorithm. The allocation of IMCUs to instances is recorded in a home-location map [5].
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The Redo Apply process on the Standby database is often confined to a singular master
instance, referred to as Single Instance Redo Apply (SIRA). A non-master instance does not
execute Redo apply; instead, it operates a local recovery coordinator process that gets the
QuerySCN from the master recovery coordinator and presents it to the queries handled by
that instance. Consequently, the IM-ADG Journal and IM-ADG Commit Table are
established solely on the master instance. During QuerySCN advancement, the ODB-on-
ADG Invalidation Flush Component queries the home-location map and transfers the
'invalidation groups' to the specified instance. The local recovery coordinator on the
receiving instance purges the invalidation groups to SMUs on that instance and confirms this
to the master. To mitigate network latency's effect on QuerySCN progression, the ODB-on-
ADG architecture utilizes batching and pipelined transmission of invalidation groups, as
messaging across the network might create a bottleneck.

Interaction of IMCS with Schema Modifications

Oracle Database accommodates many Data Definition Languages (DDL) at the levels of
table, partition, sub-partition, and column. DDL procedures often alter foundational schema
objects. Specific DDL operations in Oracle are executed solely at the data dictionary level,
resulting in no alterations to the underlying data blocks of the object. The In-Memory
database on the primary database is closely connected with these DDL processes. For
example, removing a column from a table in the IMCS eliminates the corresponding column
from all IMCUs for that table, rendering it inaccessible to queries.

ODB-on-ADG is not afforded this privilege. DDL statements are executed through redo
application on Active Data Guard. The ODB-on-ADG architecture consequently
incorporates redo markers in the redo logs as a reaction to DDL operations. Redo markers
resemble redo records but serve to denote alterations to non-persistent objects, namely the
IMCUs inside the IMCS. Redo markers are extracted via the ODB-on-ADG Mining
Component, and the information is stored in a distinct DDL Information Table, analogous
to the IM-ADG Commit Table. When forwarding the QuerySCN,

Assessment of Performance

This section will outline the primary advantages of activating ODB on Oracle ADG. The
performance enhancements of ODB for OLAP have been thoroughly evaluated in practical
corporate scenarios. Our performance assessment tests aim to illustrate the benefits of
utilizing Database In-Memory with Oracle ADG, while ensuring that the critical
functionalities of redo apply and catch-up capabilities of Oracle ADG, essential for disaster
recovery, remain uncompromised. We will examine two performance aspects: 1)
Accelerating analytic workloads on Oracle ADG amidst OLTP on the Primary database, and
2) Evaluating Redo Apply performance on an ODB-enabled Standby database with high-
throughput OLTP operating on the Primary database in a multi-tenant configuration on a 2-
node Oracle RAC.

Analytics Workloads on Standby with and Without ODB-on-ADG Infrastructure
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This section assesses the acceleration of analytic workloads on Oracle ADG in conjunction
with OLTP on the Primary Database. In contemporary corporate entities, the capacity to
integrate transactional processing with rapid on-demand analytics of real-time operational
data is crucial for making informed business choices. Oracle ODB is a pioneering dual-
format database that delivers rapid in-memory analytical performance while enhancing
transactional processing. ODB-on-ADG enhances capabilities by offering isolation and
workload segmentation, while accelerating reporting tasks.

We introduce a synthetic workload operating in various modes and the consequent
improvement in scan response times for ad-hoc queries executing full table scans. All studies
were conducted on the Oracle Exadata Database Machine, a cutting-edge symmetric
multiprocessing server and storage cluster system.

The configuration comprises a synthetic OLTAP workload that emulates an insert/update
workload interleaved with queries. The test comprises a large table containing 6 million rows
and 101 columns, including 1 identity column, 50 numeric columns, and 50 varchar2
columns, with an index established on the identity column. The hardware configuration
consisted of dual Intel Xeon E5-2690 processors operating at 2.90GHz, each with 8 cores,
and 256GB of DRAM, of which just 60GB was allocated for the in-memory pool. The test
was conducted for one hour with a target throughput of 4000 operations per second. The
proportion of DMLs and analytical queries within the workload was adjustable. We exhibit
enhancements in performance for ad-hoc searches using full-table scans executed on the
Standby database, while the Primary concurrently manages a workload including various
DML activities. We utilize measures like as query response time and CPU utilization to
demonstrate the capabilities of the ODB-on-ADG system. A crucial aspect of the
configuration is to ensure that the Oracle database buffer cache is adequately sufficient to
prevent any physical 1/0.

The achievement of the target throughput of 4000 ops/s is unattainable without ODB. There
is considerable backpressure since the configuration utilizes the same thread pool for
executing DMLs on the Primary database and queries on the Standby database. This results
in a decrease in throughput. Dedicated threads may be utilized to sustain throughput for Data
Manipulation Languages (DMLSs).

1) Workload limited to updates

The update-only workload in the simulated OLTAP configuration generates 4000 operations
per second, including 1% scan operations (40 scans per second) on the Standby database,
while 70% updates (2800 updates per second) and 29% fetch operations via the index are
performed on the Primary Database instance. We analyze the response times of queries Q1
and Q2 on the Standby Database, both with and without ODB-on-ADG. Figure 9 illustrates
that the response time has enhanced by about 100-fold for the sample queries.

The expedited scans render the Standby a feasible option for task isolation while also
decreasing CPU use on the Primary. In Update-only workloads, CPU utilization on the
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Primary Database decreases from 11.7% when all activities are executed on the Primary to
4.7% when scans are delegated to the Standby Database. The CPU use of the Standby
Database rises from 2% to 17%, with the disproportionate increase attributed to its
architectural divergence from the Primary Database.

Update and Insert workload

The Update and Insert workload sustain table scans at 1% on the Standby Database, with a
throughput of 4000 operations per second. It performs 25% inserts, 40% updates to the
primary database, with the remainder consisting of index-based retrievals. Figure 10
juxtaposes the response times for Q1 and Q2 on the Standby database, both with and without
ODB-on-ADG.

The use of ODB-on-ADG markedly enhances the performance of the Standby database,
resulting in a nearly tenfold reduction in response time. However, the query response times
pertain solely to the original table data. It is important to recognize that with inserts, the
population infrastructure must employ much more CPU resources to integrate the newly
entered data into the IMCS. The extensive concurrent invalidation and population activities
on the edge IMCU related to new inserts result in a restricted performance advantage of the
IMCS.

Comparison of Read-only Analytic Workloads on Primary and Standby Databases

This experiment demonstrates that the Primary and Standby databases exhibit equivalent
performance under a scan-only demand.

A workload devoid of DMLs is executed independently on both the Primary and Standby
databases. This indicates that searches for a specific data subset (e.g., a partition) devoid of
DML activity may be effortlessly offloaded to the Standby, entirely transparent to the end-
user.

The scan-only workload employs the identical simulated OLTAP configuration as
subsection IVA, executing 4000 operations per second, including 25% ad-hoc queries doing
full-table scans (1000 scans per second) and 75% fetch queries utilizing the index. Table 2
juxtaposes the response time for Q1 on the Primary and Standby databases with ODB
activated on both.

Moreover, there is a direct transference of CPU use from the Primary to the Standby database
instance—while the Primary's CPU usage diminishes from 8% to 0.5%, the Standby's CPU
escalates from 0.3% to 7.9% during the execution of scans against the Standby database.

Execution of Redo Apply on the Standby Database

This experiment demonstrates that the ODB-on-ADG functionality does not substantially
influence Redo Apply on the Standby database. The QuerySCN advancement rate is
minimally impacted by the Invalidation Flush. The workload employed is a high-throughput
transaction workload including a mix of short, medium, and long-running transactions
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executed on the primary database utilizing Oracle multi-tenant architecture. The Primary and
Standby databases are configured with 120 GB of DRAM.

The advancement of the redo log archiving on the Primary database operating with two
Oracle RAC Instances (pri_log, pri_log2) for a duration of two hours. The archived redo is
transmitted to the Standby database, and the status of the redo log application on the Standby
database RAC instances 1 and 2, with the ODB-on-ADG feature on, is illustrated in the
figure (std_logl, std_log2). The log catchup is very fast, and the Standby database exhibits
negligible latency, despite the overheads caused by the ODB-on-ADG architecture.

Conclusions

Oracle Active Data Guard is a distinctive architecture that facilitates query execution on a
Standby database, whilst functioning as a disaster recovery solution. The ODB-on-ADG
infrastructure allows queries performed on the Standby Database to use ODB advantages,
significantly enhancing the response time of certain queries. ODB-on-ADG utilizes the
highly parallelized architecture of ADG Recovery to synchronize the In-Memory Column
Store on the Standby database with ongoing transactional activities on the Primary database,
while guaranteeing the integrity of the Standby database stays dedicated to its objective of
catastrophe recoverability. The extension of Database In-Memory capabilities to the Standby
database allows customers to optimize their read-write and read-only workloads by
segregating them across the Primary and Standby Databases, hence facilitating accelerated
analytics for both types of workloads.

Activating ODB on the Standby database has granted access to several functionality offered
by ODB. In-Memory Expressions [1] are now enabled on the Standby database, delivering
enhanced performance for intricate analytical expressions utilized in reporting queries,
including JSON processing. In-Memory Join Groups may also be established for the Standby
database to expedite join processing. External data sources, such as Hadoop, can be utilized
for population in the IMCS with the In-Memory External Tables functionality [7]. The
innovative formats and techniques employed by ODB, like as in-memory storage indexes
and aggregation push-down, are smoothly integrated into ADG, so enhancing the Standby
database for real-time analytics processing.
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