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  ABSTRACT  

 
 Oracle Database (ODB) offers significant acceleration for analytic queries with its highly 

compressed, transactionally consistent, memory-optimized Column Store. Customers may utilize 

Oracle ODB to make real-time judgments by evaluating extensive data sets at remarkable rates. 

Active Data Guard (ADG) is Oracle's all-encompassing solution for high availability and disaster 

recovery of the Oracle Database. Oracle ADG mitigates the substantial expense of idle redundancy 

by enabling reporting applications, ad-hoc queries, and data extracts to be delegated to the 

synchronized, physical Standby database duplicated via Oracle ADG. In Oracle 12.2, we expanded 

the ODB benefit to the Oracle ADG architecture. ODB-on-ADG markedly enhances the performance 

of analytic, read-only workloads executed on the physical Standby database, while the Primary 

database persists in managing high-velocity OLTP workloads. Customers may distribute their data 

across the In-Memory Column Stores on both the Primary and Standby databases according to 

access patterns, so achieving fault tolerance and workload segregation without sacrificing essential 

performance SLAs. This study examines the principal issues associated with constructing the ODB-

on-ADG architecture, particularly the synchronized maintenance of the In-Memory Column Store 

on the Standby database, amid ongoing high-speed OLTP activity that continually alters data on the 

Primary database. 
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Introduction 

Oracle Active Data Guard (ADG) offers active-standby replication for the Oracle Database. 

The Standby database is a synchronized, physical replica of the Primary database, usually 

located at a distant site. The Primary interacts with the Standby database using a network 

protocol such as TCP/IP. The Standby database is crucial for disaster recovery, usually 

trailing the Primary database by sub-second latency, thereby offering nearly real-time, read-

only access to database items. Sub-second delays are acceptable for many reporting systems 

that handle extensive datasets, such as Big Data analytics. Transferring read-only workloads 

to the Standby database alleviates CPU use on the Primary (Production) database for OLTP 

and segregates batch reporting demands from live operations [3]. This study elucidates the 

enhancement of ODB functionality [12] inside the Oracle ADG architecture, enabling 

analytic tasks offloaded to the Standby database to execute with much improved speed. The 

ODB-on-ADG architecture facilitates the independent scalability of both Primary and 

Standby databases using Oracle Real Application Clusters (RAC), granting enterprise-scale 

clients complete autonomy in augmenting their OLTP or read-only workloads [1-5]. 
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Capacity Expansion Capability: When the In-Memory Column Store (IMCS) is setup for 

both Primary and Standby databases, the data contained inside the IMCS of the two databases 

may consist of entirely distinct sets of objects. This method efficiently enlarges the IMCS. 

In a standard setup, clients can establish three services: Standby-only, Primary-only, and 

Primary-and-Standby utilizing Oracle’s Services Infrastructure [7]. Figure 2 illustrates that 

the most recent month of the SALES fact table data is stored in the Primary instance’s IMCS, 

while the complete year's SALES data is retained in the Standby instance for analytical 

purposes. The dimension tables may be loaded in both cases to enhance join processing 

efficiency. For each partition of SALES data, the customer designates either the standby or 

primary service, and for each dimension table, the client selects a service including both 

primary and standby database instances. Customers may accomplish workload separation 

with the IMCS capacity extension feature of the ODB-on-ADG architecture, therefore 

benefiting from accelerated analytics for workloads executed on both instances [6-16]. 

The Oracle ADG's distinctive replication architecture required a redesign of essential 

elements within the Oracle ODB infrastructure, particularly those responsible for populating 

data in the IMCS and ensuring its transactional integrity. A significant issue in building the 

ODB-on-ADG architecture was to preserve the primary advantage of ADG — its catastrophe 

recoverability. The recoverability from disaster is contingent upon the rapidity with which 

the Standby database can synchronize with the redo logs generated by the Primary database. 

Consequently, the ODB-on-ADG infrastructure is engineered to impose minimal overhead 

on the ADG architecture. The approach executes minimum processing on crucial pathways 

and leverages the extensive parallelism utilized by the Oracle ADG architecture. 

This article is structured as follows: Section II presents an introduction of Oracle ADG and 

Database In-Memory; Section III elucidates the ODB-on-ADG architecture and the design 

of its components; Section IV offers performance findings; and Section V finishes with a 

discussion of future work. 

An Overview of Oracle ADG and ODB Architectures 

Summary of Oracle ADG Architecture 

Oracle ADG offers active-standby replication for the Oracle Database. The replica, referred 

to as the Standby database, is a synchronized, physical duplicate of the Primary database, 

preserved by Redo Apply (also known as Media Recovery) [6]. 

Redo logs transmitted from the Primary database encompass redo records, which may be 

produced by many Oracle database instances (utilizing Oracle RAC [9]). A redo record may 

include numerous Redo Change Vectors (CVs), each corresponding to a specific database 

block indicated by the Database Block Address (DBA). All CVs in a redo record are deemed 

to have been produced at the identical SCN (System Change Number), which signifies the 

database timestamp when alterations were executed on the database blocks. Every CV is 

assigned a transaction identification. It is essential to recognize that the SCN linked to a redo 

record may not correspond to the database time at which the transaction commits 
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(commitSCN). The commitSCN is, indeed, the SCN linked to a 'commit’ CV, which is 

utilized for a certain block. In the Standby instance, a Log Merger procedure organizes the 

redo data according to their SCN. The SCN-ordered logs may be utilized to apply to the 

respective database blocks, therefore generating a physical replica of the underlying datafiles 

on the Standby database. Upon the application of all CVs up to a certain SCN value, the 

Standby database is deemed to have synchronized with the Primary database at that SCN. 

This represents the most basic iteration of redo application [17-27]. 

Logs on the Primary database may be produced by several simultaneous transactions. The 

serialization of log application to the Standby database can significantly impede redo 

application, hence exacerbating the latency between the Primary and Standby databases. 

This undermines the primary objective of the Standby Database – catastrophe recovery. 

Consequently, the redo apply process is extensively parallelized for Oracle ADG by 

allocating the SCN-ordered collection of CVs among recovery worker processes via a 

hashing mechanism. Figure 3 illustrates the overarching architecture of Parallelized Redo 

Apply. Each DBA is mapped to a specific recovery worker identification, enabling a 

recovery worker process to autonomously process its allocated CVs and apply them to 

database blocks in SCN order. 

While parallelization accelerates redo application, it presents a possible issue of transactional 

inconsistency. Due to the varying rates at which recovery workers may apply the change 

vectors, the transactional sequence of modifications on the Standby database may be 

disrupted. In Figure 3, recovery worker 1 continues to implement the CV from SCN 100, but 

recovery worker N has advanced and is utilizing the CV from SCN 110, which incorporates 

a modification to the database at a subsequent time. If the modifications to DBA 7 and DBA 

150 constitute a single transaction, the alteration to DBA 150 must remain imperceptible to 

queries until the modification to DBA 7 is likewise perceptible, in accordance with the 

atomicity feature of transactions. A centralized coordinator must ensure awareness of the 

implemented changes on the Standby database, leading us to the notion of QuerySCN in 

Active Data Guard (ADG). 

A recovery coordinator process monitors the advancement of all recovery worker processes 

and sets a consistency point at which all workers have finalized the redo application. The 

consistency point is identified as the 'QuerySCN' on ADG. The QuerySCN functions as the 

Consistent Read (CR) snapshot for queries performed on the Standby database, until a more 

recent consistency point (i.e., a higher QuerySCN) is created by the 

Recovery Coordinator. Due to the varying speeds at which recovery worker processes apply 

redo, the QuerySCN on ADG often exhibits leapfrogging rather than a continuous sequence 

of successive SCNs. 

Specific elements of the ODB-on-ADG architecture are intentionally placed to create a 

uniform consistency point for the IMCS. This allows queries executed at the QuerySCN to 

utilize the IMCS on the Standby Database. Section III examines these elements and their 

positioning comprehensively [28-41]. 
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Summary of Oracle Database  

Row-stores are optimal for OLTP workloads, where transactions engage a limited number 

of rows but several columns inside each row, whereas column stores are appropriate for 

analytic workloads that often access a vast number of rows, but only a few columns per row. 

Oracle ODB [12] implemented a dual-format architecture that preserves two versions of 

identical data: the conventional row-format on-disk and a columnar format in the IMCS. The 

ODB Transaction Manager maintains consistency between the column store and the current 

transactional activities in the row store. Oracle ODB is therefore designed to accelerate 

mixed-OLTP workloads that execute transaction processing and analytic queries. 

The IMCS data consists of read-only In-Memory Columnar Units (IMCUs). IMCUs utilize 

methods like as data compression and encoding to optimize the packing of the IMCS. The 

In-Memory Scan Engine utilizes techniques like as SIMD vector processing, in-memory 

storage indexes, and efficient predicate evaluation and aggregation to enhance the 

performance of analytic queries. Data loading in the IMCS, referred to as Population, is often 

executed as a background process and does not impact concurrent transactions and queries. 

The population creates a snapshot SCN for each IMCU, and the IMCU is populated with 

data that aligns with the snapshot SCN according to Oracle's Consistent Read (CR) 

paradigm. 

Upon loading, data in the IMCUs is synced with active transaction processing using specific 

methodologies. A Snapshot Metadata Unit (SMU) is associated with each IMCU and 

monitors the integrity of the data contained inside its related IMCU at many levels of 

granularity: block level, row level, and column level. The In-Memory Scan Engine 

synchronizes the IMCU data with the SMU to guarantee that incorrect or outdated data is 

not retrieved from the IMCS, but rather from the database buffer cache (i.e., the row-store). 

As transactions continue to alter the underlying row-store, an increasing proportion of the 

data in an IMCU becomes invalid over time. The repopulation approach is utilized to update 

the data in an IMCU with a more recent snapshot SCN, hence optimizing query speed when 

scanning the IMCS. Repopulation, like to population, is entirely online, transparent to 

queries and transactions interfacing with the IMCU, and is executed as a background process. 

A collection of heuristics is employed to initiate repopulation and adjust the repopulation 

frequency of each IMCU. 

Besides ensuring consistency guarantees for data within IMCUs, SMUs facilitate 

concurrency management and synchronize processes such as repopulation, scanning, and 

removal of IMCUs. Figure 4 depicts a comprehensive overview of the ODB architecture, 

highlighting access patterns for various components. 

ODB-on-ADG Infrastructure 

The Standby database does continuous redo application and generates consistency points 

that ensure queries provide consistent results. The ODB-on-ADG architecture utilizes 

specialized components to populate the IMCS and preserve its transactional consistency at 
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certain consistency points. Figure 5 illustrates the principal components of the ODB-on-

ADG system [42-53]. 

The ODB-on-ADG infrastructure engages with the QuerySCN progression on the Standby 

database to get a consistent snapshot SCN for the IMCS population. Upon population, the 

transactional consistency of the IMCS is kept via strategically located components: 

The Mining Component leverages recovery workers to detect changes to items within the 

IMCS. The metadata extracted by the Mining Component is stored in the In-Memory ADG 

(IM-ADG) Journal. The Invalidation Flush Component transmits this metadata to SMUs 

during QuerySCN progression, therefore rendering updated data in the IMCUs invalid. 

Nuanced improvements to the previously described components enable ODB-on-ADG 

architecture to expand effortlessly over ADG-RAC and accommodate schema modifications. 

Moreover, specific redo generation may be utilized on the Primary database to maintain the 

consistency of IMCS during ADG instance restarts. The subsequent subsections elucidate 

the function and design of these components comprehensively. 

Population of the IMCS on ADG 

The IMCS population in the Standby database, like to that in the Primary database, is 

engineered to remain entirely online and does not impede continuous queries on the IMCS. 

A segment loader divides an object into data block ranges, while background population 

worker processes create IMCUs for the DBA ranges. Queries and redo application on the 

Standby continue uninterrupted throughout the populating of the IMCS. 

In contrast to the Primary database, the Standby database disseminates distinct consistency 

points that align with the QuerySCNs. Consequently, the snapshot SCN of an IMCU is 

invariably the QuerySCN determined at that moment. This is crucial because the population 

infrastructure may experience a transient state of the database if it selects a snapshot that is 

not a consistency point. Synchronization is essential between the recovery coordinator 

disseminating a fresh QuerySCN and the population infrastructure recording the snapshot 

SCN. This is accomplished via the 'Quiesce Period' on the Standby Database. Prior to 

publishing a new QuerySCN, the recovery coordinator acquires the 'Quiesce lock' to signify 

the commencement of the Quiesce Period on the instance. The population infrastructure is 

prohibited from capturing the snapshot SCN for IMCUs during the Quiesce Period. Upon 

the publication of the new QuerySCN, the Quiesce Period concludes, allowing the 

population infrastructure to acquire the snapshot SCN for IMCUs. Background procedures 

inside the population infrastructure verify the conclusion of the Quiesce Period and maintain 

the Quiesce lock while recording the snapshot SCN for an IMCU. 

Upon populating the IMCUs in the Standby database instance, the query engine operating 

on the Standby database—identical to that of the Primary database—can leverage all 

optimizations and methodologies devised by the In-Memory Scan Engine to scan the IMCS, 

thereby delivering exceptionally rapid query responses. The subsequent primary objective is 

to maintain the IMCS on the Standby database in alignment with the consistency point or 
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QuerySCN being disseminated, ensuring that queries get the most current and consistent 

results. 

Mining Element 

Recovery personnel on the Standby database (ADG) implement Redo Change Vectors (CVs) 

to the foundational data blocks. The ODB-on-ADG Mining Component leverages the 

recovery workers to detect each CV. When the CV alters an object designated for loading in 

the IMCS on the Standby database, a tuple comprising the Object Identifier, Data Block 

Identifier (DBA), and the list of modified rows inside the data block is recorded in the IM-

ADG Journal. Given that ODB-on-ADG operates with Oracle Database facilitating multi-

tenant applications, the tuple further comprises tenant information. Each tuple extracted from 

analyzing a CV is referred to as a 'Invalidation Record' (refer to Figure 6). As modifications 

to the data blocks are this tuple is tagged with its transaction identifier, ensuring atomicity at 

transaction borders. 

Besides extracting alterations to the data within the IMCS, ODB-on-ADG methods must also 

extract certain control information. Every transaction possesses a distinct commit point, or 

commitSCN, at which the alterations of a transaction are deemed atomic, persistent, and 

accessible to queries in accordance with Oracle’s Consistent Read model. The IMCS on the 

Standby database must also comply with these promises. Consequently, the ODB-on-ADG 

Mining Component extracts control information regarding transactions – namely. 

Transaction state transitions, including Transaction Begin, Prepare, Commit, and Abort, 

along with the corresponding commitSCN for each transaction. Invalidation records are 

linked to this control information via the Transaction Identifier. 

One may naturally inquire, "Why cannot an invalidation record be promptly flushed to the 

SMU following its construction?"The SMU must document this information to ensure 

transactional consistency of the IMCUs. The rationale for postponing the flush is twofold. 

Initially, because the populating of an IMCU occurs as a background process, independent 

of the redo application, it is plausible that the corresponding SMU has not yet been 

established. Secondly, even if the SMU is present, prematurely purging the invalidation 

records results in the exposure of a transaction's alterations prior to its commitSCN. 

Although this may appear to be a precautionary measure, certain processes are necessary to 

ensure the SMU's persistence and retention of the invalidation information until the 

QuerySCN on Standby aligns with the transaction's commitSCN. Given that population and 

repopulation occur in the background in an entirely online fashion, it is exceedingly 

challenging to offer such assurances. 

To avert these occurrences, ODB-on-ADG protocols save invalidation entries in a 'IM-ADG 

Journal' and thereafter transmit them to the SMUs at an ideal juncture. 

IM-ADG Journal to Cache the Invalidation Records 

The IM-ADG Journal enables the documentation and storage of invalidation entries 

extracted by the ODB-on-ADG Mining Component. The IM-ADG Journal is intended to 
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operate in conjunction with the massively parallel redo apply, while preserving the principle 

that modifications must be atomic at transaction borders. 

The fundamental architecture of the IM-ADG Journal comprises an in-memory hash table 

that associates a transaction identifier with its invalidation data. The hash table is 

dimensioned according to the degree of parallelism utilized by the ADG design to minimize 

conflict among the recovery worker processes. 

Nevertheless, with an exceedingly high transaction throughput on the Primary database, 

some chaining in the hash buckets may be observed. The resultant hash chains are 

safeguarded by a 'bucket lock' to synchronize several recovery worker processes functioning 

on the same hash bucket. Figure 7 illustrates the overarching architecture of the IM-ADG 

Journal. 

Each hashbucket has hashtable nodes that function as the anchor for invalidation records 

originating from a transaction. It is crucial to uphold transaction atomicity guarantees—

either all modifications of a transaction must be accessible to a query, or none should be. 

Upon the creation of an anchor node for a transaction, each recovery worker is allocated a 

designated section within the anchor node to store the invalidation records it generates. This 

eliminates the necessity for synchronization among several recovery workers processing 

invalidation records for a transaction, which is a frequent occurrence. Figure 7 illustrates the 

storage of mined invalidation entries for transactions T1 and T2 within the IM-ADG Journal. 

T3 now lacks invalidation records; nonetheless, the anchor node would have been 

established upon the mining of the matching 'transaction begin' (control operation) by a 

recovery worker. 

Advancement of QuerySCN and Invalidation Flush to SMU 

When the Standby database is prepared to progress the QuerySCN to establish a more recent 

consistency point, the invalidation records collected in the IM-ADG Journal must be 

transmitted to the SMUs, but only if the transaction that generated those changes has a 

commitSCN that is less than or equal to the new QuerySCN. The IM-ADG Journal maintains 

distinct invalidation entries for each transaction, rendering this procedure straightforward. 

Nonetheless, a transaction may alter data across several IMCUs, necessitating the mapping 

of invalidation records to the relevant SMUs to facilitate a cost-effective flush operation. 

The Invalidation Flush Component does this by categorizing the invalidation data into 

'Invalidation groups.' The recovery coordinator progressing the QuerySCN purges the 

invalidation groups to pertinent SMUs prior to disseminating the updated QuerySCN. 

Consequently, any queries executed at the new QuerySCN will render the associated data in 

the IMCU invalid. 

Although this appears to be a simple procedure, it can result in considerable lag in publishing 

the new QuerySCN if the recovery coordinator does this task independently and sequentially. 

As stated in Section IIA, the Primary database produces logs in a multi-threaded fashion, 

executing hundreds of transactions per second, resulting in a rapid advancement of the SCN 
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on the Primary database. Consequently, the Standby database must rapidly elevate the 

consistency point to ever higher QuerySCNs. Any delay in creating the QuerySCN 

jeopardizes the Standby database's synchronization, hence compromising its failover 

capabilities. The Invalidation Flush is therefore on the critical path, making the optimization 

of this procedure essential. 

The ODB-on-ADG architecture utilizes two primary methods to minimize the latency of 

Invalidation Flush during QuerySCN progression. A assistance structure known as the 'IM-

ADG Commit Table' is established to facilitate rapid access to the IM-ADG Journal. 

Secondly, the recovery personnel are reassigned to execute a highly parallelized, 

collaborative flushing operation. 

The ODB-on-ADG Mining Component preserves an in-memory, ordered linked list of 

transaction IDs and their corresponding commit SCN in the IM-ADG Commit Table. When 

specific control information on a transaction is extracted – namely. A 'Commit Table node' 

is generated during a transaction commit or transaction preparation. The Commit Table node 

includes the transaction identification and associated commitSCN, and is added into the 

linked list, which is organized by commitSCN. The Commit Table node directly references 

the anchor node in the IM-ADG Journal, which holds the transaction's invalidation entries. 

When a new consistency point must be established, the ODB-on-ADG Invalidation Flush 

Component utilizes the recovery coordinator process to truncate the Commit Table and 

generate a Worklink (refer to Figure 8). All nodes in the worklink include transaction IDs 

for transactions that must be 'flushed' to the SMUs prior to the publication of the new 

consistency point. The Invalidation Flush Component does this by securing direct access to 

the IM-ADG Journal anchor node via the worklink. It collects all invalidation records for 

each transaction, organizes them into invalidation groups according to the DBA ranges for 

IMCUs, and transmits them to the corresponding SMUs. 

To mitigate the bottleneck of insertion into a singular, sorted linked list by the Mining 

Component, the IM-ADG Commit Table may be partitioned to generate numerous sorted 

linked lists. A worklink is generated for each sorted list during the progress of QuerySCN. 

Collaborative Flush: 

Once the worklink is established, the invalidation records for various transactions inside the 

worklink may be parallelized with ease. The ODB-on-ADG Invalidation Flush Component 

employs recovery workers to facilitate this process, executing a 'Cooperative Flush.' 

Moreover, recovery personnel 

 

During the execution of the redo apply task, periodically verify the creation of a worklink. 

If a worklink exists, the recovery workers assist the recovery coordinator in flushing a batch 

of nodes from the worklink prior to proceeding with redo application. The recovery 
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coordinator establishes the worklink, monitors its advancement, and disseminates the target 

QuerySCN as the new consistency point when the worklink has been depleted. 

Specialized Redo Generation in the Primary Database 

The Primary database remains largely indifferent to the existence of the IMCS on the 

Standby database, so no additional overheads are incurred when a transaction produces CVs 

to alter data on the Primary database. Nonetheless, an exception exists to this rule. Special 

redo generation may be executed on the Primary database by annotating the Commit Record 

of a transaction with a flag that signifies if the transaction altered any object designated for 

inclusion in the IMCS. This paragraph elucidates the utilization of this flag inside the ODB-

on-ADG infrastructure. 

The redo application on ADG is entirely independent of the Primary database. The database 

administrator may enable or disable redo apply on ADG and can arbitrarily shut down and 

restart the Standby database instances. ADG procedures retain sufficient state to facilitate 

recovery in such instances. Nevertheless, due to the IMCS lacking a permanent footprint 

aside from the foundational row-store objects, ODB-on-ADG components forfeit all their 

state upon instance restart. A transaction may be partially mined during a recovery session, 

after which the Standby database instance can be shut down and restarted, with the 

transaction commit information subsequently mined in a later session. If the commit SCN of 

the transaction exceeds the snapshot SCN of an IMCU, the invalidation records of the 

transaction must be sent to the corresponding SMU. The Commit Record of the transaction 

contains a flag to signify if any invalidation records are anticipated for this transaction. If 

they are, and the IM-ADG Journal contains none or just a partial set of invalidation data 

(indicated by the absence of a 'transaction begin' control information record), the Invalidation 

Flush Component employs a coarse invalidation technique to label all IMCUs for the 

designated renter as 'invalid.' Designating an IMCU as invalid prevents queries from 

accessing it until it is replenished. 

Coarse invalidation causes considerable delay, but it occurs just when the Standby database 

instance is restarted. Therefore, if the populating of the IMCS is delayed briefly upon 

instance restart, we do not anticipate any coarse invalidation. It is important to acknowledge 

that special redo generation is not strictly necessary. ODB-on-ADG may conservatively 

presume that each transaction altered an object in the IMCS and initiate broad invalidation 

upon the detection of a missing 'transaction begin'. Nonetheless, to ensure optimal query 

speed, it is advisable to avoid initiating coarse invalidation. 

Oracle Database on Oracle Data Guard with Real Application Clusters 

Primary and Standby databases may be scaled autonomously with Oracle Real Application 

Clusters (RAC). Oracle Database In-Memory effortlessly scales over RAC, with IMCUs 

allocated across the IMCS on several Oracle RAC instances according to a hashing 

algorithm. The allocation of IMCUs to instances is recorded in a home-location map [5]. 
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The Redo Apply process on the Standby database is often confined to a singular master 

instance, referred to as Single Instance Redo Apply (SIRA). A non-master instance does not 

execute Redo apply; instead, it operates a local recovery coordinator process that gets the 

QuerySCN from the master recovery coordinator and presents it to the queries handled by 

that instance. Consequently, the IM-ADG Journal and IM-ADG Commit Table are 

established solely on the master instance. During QuerySCN advancement, the ODB-on-

ADG Invalidation Flush Component queries the home-location map and transfers the 

'invalidation groups' to the specified instance. The local recovery coordinator on the 

receiving instance purges the invalidation groups to SMUs on that instance and confirms this 

to the master. To mitigate network latency's effect on QuerySCN progression, the ODB-on-

ADG architecture utilizes batching and pipelined transmission of invalidation groups, as 

messaging across the network might create a bottleneck. 

Interaction of IMCS with Schema Modifications 

Oracle Database accommodates many Data Definition Languages (DDL) at the levels of 

table, partition, sub-partition, and column. DDL procedures often alter foundational schema 

objects. Specific DDL operations in Oracle are executed solely at the data dictionary level, 

resulting in no alterations to the underlying data blocks of the object. The In-Memory 

database on the primary database is closely connected with these DDL processes. For 

example, removing a column from a table in the IMCS eliminates the corresponding column 

from all IMCUs for that table, rendering it inaccessible to queries. 

ODB-on-ADG is not afforded this privilege. DDL statements are executed through redo 

application on Active Data Guard. The ODB-on-ADG architecture consequently 

incorporates redo markers in the redo logs as a reaction to DDL operations. Redo markers 

resemble redo records but serve to denote alterations to non-persistent objects, namely the 

IMCUs inside the IMCS. Redo markers are extracted via the ODB-on-ADG Mining 

Component, and the information is stored in a distinct DDL Information Table, analogous 

to the IM-ADG Commit Table. When forwarding the QuerySCN, 

Assessment of Performance 

This section will outline the primary advantages of activating ODB on Oracle ADG. The 

performance enhancements of ODB for OLAP have been thoroughly evaluated in practical 

corporate scenarios. Our performance assessment tests aim to illustrate the benefits of 

utilizing Database In-Memory with Oracle ADG, while ensuring that the critical 

functionalities of redo apply and catch-up capabilities of Oracle ADG, essential for disaster 

recovery, remain uncompromised. We will examine two performance aspects: 1) 

Accelerating analytic workloads on Oracle ADG amidst OLTP on the Primary database, and 

2) Evaluating Redo Apply performance on an ODB-enabled Standby database with high-

throughput OLTP operating on the Primary database in a multi-tenant configuration on a 2-

node Oracle RAC. 

Analytics Workloads on Standby with and Without ODB-on-ADG Infrastructure 
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This section assesses the acceleration of analytic workloads on Oracle ADG in conjunction 

with OLTP on the Primary Database. In contemporary corporate entities, the capacity to 

integrate transactional processing with rapid on-demand analytics of real-time operational 

data is crucial for making informed business choices. Oracle ODB is a pioneering dual-

format database that delivers rapid in-memory analytical performance while enhancing 

transactional processing. ODB-on-ADG enhances capabilities by offering isolation and 

workload segmentation, while accelerating reporting tasks. 

We introduce a synthetic workload operating in various modes and the consequent 

improvement in scan response times for ad-hoc queries executing full table scans. All studies 

were conducted on the Oracle Exadata Database Machine, a cutting-edge symmetric 

multiprocessing server and storage cluster system. 

The configuration comprises a synthetic OLTAP workload that emulates an insert/update 

workload interleaved with queries. The test comprises a large table containing 6 million rows 

and 101 columns, including 1 identity column, 50 numeric columns, and 50 varchar2 

columns, with an index established on the identity column. The hardware configuration 

consisted of dual Intel Xeon E5-2690 processors operating at 2.90GHz, each with 8 cores, 

and 256GB of DRAM, of which just 60GB was allocated for the in-memory pool. The test 

was conducted for one hour with a target throughput of 4000 operations per second. The 

proportion of DMLs and analytical queries within the workload was adjustable. We exhibit 

enhancements in performance for ad-hoc searches using full-table scans executed on the 

Standby database, while the Primary concurrently manages a workload including various 

DML activities. We utilize measures like as query response time and CPU utilization to 

demonstrate the capabilities of the ODB-on-ADG system. A crucial aspect of the 

configuration is to ensure that the Oracle database buffer cache is adequately sufficient to 

prevent any physical I/O. 

The achievement of the target throughput of 4000 ops/s is unattainable without ODB. There 

is considerable backpressure since the configuration utilizes the same thread pool for 

executing DMLs on the Primary database and queries on the Standby database. This results 

in a decrease in throughput. Dedicated threads may be utilized to sustain throughput for Data 

Manipulation Languages (DMLs). 

1) Workload limited to updates 

The update-only workload in the simulated OLTAP configuration generates 4000 operations 

per second, including 1% scan operations (40 scans per second) on the Standby database, 

while 70% updates (2800 updates per second) and 29% fetch operations via the index are 

performed on the Primary Database instance. We analyze the response times of queries Q1 

and Q2 on the Standby Database, both with and without ODB-on-ADG. Figure 9 illustrates 

that the response time has enhanced by about 100-fold for the sample queries. 

The expedited scans render the Standby a feasible option for task isolation while also 

decreasing CPU use on the Primary. In Update-only workloads, CPU utilization on the 
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Primary Database decreases from 11.7% when all activities are executed on the Primary to 

4.7% when scans are delegated to the Standby Database. The CPU use of the Standby 

Database rises from 2% to 17%, with the disproportionate increase attributed to its 

architectural divergence from the Primary Database. 

Update and Insert workload 

The Update and Insert workload sustain table scans at 1% on the Standby Database, with a 

throughput of 4000 operations per second. It performs 25% inserts, 40% updates to the 

primary database, with the remainder consisting of index-based retrievals. Figure 10 

juxtaposes the response times for Q1 and Q2 on the Standby database, both with and without 

ODB-on-ADG. 

The use of ODB-on-ADG markedly enhances the performance of the Standby database, 

resulting in a nearly tenfold reduction in response time. However, the query response times 

pertain solely to the original table data. It is important to recognize that with inserts, the 

population infrastructure must employ much more CPU resources to integrate the newly 

entered data into the IMCS. The extensive concurrent invalidation and population activities 

on the edge IMCU related to new inserts result in a restricted performance advantage of the 

IMCS. 

Comparison of Read-only Analytic Workloads on Primary and Standby Databases 

This experiment demonstrates that the Primary and Standby databases exhibit equivalent 

performance under a scan-only demand. 

A workload devoid of DMLs is executed independently on both the Primary and Standby 

databases. This indicates that searches for a specific data subset (e.g., a partition) devoid of 

DML activity may be effortlessly offloaded to the Standby, entirely transparent to the end-

user. 

The scan-only workload employs the identical simulated OLTAP configuration as 

subsection IVA, executing 4000 operations per second, including 25% ad-hoc queries doing 

full-table scans (1000 scans per second) and 75% fetch queries utilizing the index. Table 2 

juxtaposes the response time for Q1 on the Primary and Standby databases with ODB 

activated on both. 

Moreover, there is a direct transference of CPU use from the Primary to the Standby database 

instance—while the Primary's CPU usage diminishes from 8% to 0.5%, the Standby's CPU 

escalates from 0.3% to 7.9% during the execution of scans against the Standby database. 

Execution of Redo Apply on the Standby Database 

This experiment demonstrates that the ODB-on-ADG functionality does not substantially 

influence Redo Apply on the Standby database. The QuerySCN advancement rate is 

minimally impacted by the Invalidation Flush. The workload employed is a high-throughput 

transaction workload including a mix of short, medium, and long-running transactions 
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executed on the primary database utilizing Oracle multi-tenant architecture. The Primary and 

Standby databases are configured with 120 GB of DRAM. 

The advancement of the redo log archiving on the Primary database operating with two 

Oracle RAC Instances (pri_log, pri_log2) for a duration of two hours. The archived redo is 

transmitted to the Standby database, and the status of the redo log application on the Standby 

database RAC instances 1 and 2, with the ODB-on-ADG feature on, is illustrated in the 

figure (std_log1, std_log2). The log catchup is very fast, and the Standby database exhibits 

negligible latency, despite the overheads caused by the ODB-on-ADG architecture. 

Conclusions  

Oracle Active Data Guard is a distinctive architecture that facilitates query execution on a 

Standby database, whilst functioning as a disaster recovery solution. The ODB-on-ADG 

infrastructure allows queries performed on the Standby Database to use ODB advantages, 

significantly enhancing the response time of certain queries. ODB-on-ADG utilizes the 

highly parallelized architecture of ADG Recovery to synchronize the In-Memory Column 

Store on the Standby database with ongoing transactional activities on the Primary database, 

while guaranteeing the integrity of the Standby database stays dedicated to its objective of 

catastrophe recoverability. The extension of Database In-Memory capabilities to the Standby 

database allows customers to optimize their read-write and read-only workloads by 

segregating them across the Primary and Standby Databases, hence facilitating accelerated 

analytics for both types of workloads. 

Activating ODB on the Standby database has granted access to several functionality offered 

by ODB. In-Memory Expressions [1] are now enabled on the Standby database, delivering 

enhanced performance for intricate analytical expressions utilized in reporting queries, 

including JSON processing. In-Memory Join Groups may also be established for the Standby 

database to expedite join processing. External data sources, such as Hadoop, can be utilized 

for population in the IMCS with the In-Memory External Tables functionality [7]. The 

innovative formats and techniques employed by ODB, like as in-memory storage indexes 

and aggregation push-down, are smoothly integrated into ADG, so enhancing the Standby 

database for real-time analytics processing. 
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