
INTERNATIONAL JOURNAL OF MODERN COMPUTING Volume-2023

75 | P a g e

Real Time Data Analytics on Active Data Guard

Krishna C Gonugunta1, Meng Chen2

1Sr. Database Admin/SCS Operational Manager, Nevada System of Higher Education (NSHE), 2601 Enterprise

Rd, Reno NV 89512
2Centre for Innovative and Lifelong Learning, ICDT

 ABSTRACT

 Oracle Database (ODB) offers significant acceleration for analytic queries with its highly

compressed, transactionally consistent, memory-optimized Column Store. Customers may utilize

Oracle ODB to make real-time judgments by evaluating extensive data sets at remarkable rates.

Active Data Guard (ADG) is Oracle's all-encompassing solution for high availability and disaster

recovery of the Oracle Database. Oracle ADG mitigates the substantial expense of idle redundancy

by enabling reporting applications, ad-hoc queries, and data extracts to be delegated to the

synchronized, physical Standby database duplicated via Oracle ADG. In Oracle 12.2, we expanded

the ODB benefit to the Oracle ADG architecture. ODB-on-ADG markedly enhances the performance

of analytic, read-only workloads executed on the physical Standby database, while the Primary

database persists in managing high-velocity OLTP workloads. Customers may distribute their data

across the In-Memory Column Stores on both the Primary and Standby databases according to

access patterns, so achieving fault tolerance and workload segregation without sacrificing essential

performance SLAs. This study examines the principal issues associated with constructing the ODB-

on-ADG architecture, particularly the synchronized maintenance of the In-Memory Column Store

on the Standby database, amid ongoing high-speed OLTP activity that continually alters data on the

Primary database.

Keywords: Data Guard Configuration, Active Data Guard, Data Replication, Real-time Data

Synchroniztion, Data Guard Broker, Real-Time Data Protection, Standby Database

Analytics, Real-Time Querying, Data Guard Snapshot Standby, Zero Data Loss, Read-

Only Standby database, Real-Time Data.

Introduction

Oracle Active Data Guard (ADG) offers active-standby replication for the Oracle Database.

The Standby database is a synchronized, physical replica of the Primary database, usually

located at a distant site. The Primary interacts with the Standby database using a network

protocol such as TCP/IP. The Standby database is crucial for disaster recovery, usually

trailing the Primary database by sub-second latency, thereby offering nearly real-time, read-

only access to database items. Sub-second delays are acceptable for many reporting systems

that handle extensive datasets, such as Big Data analytics. Transferring read-only workloads

to the Standby database alleviates CPU use on the Primary (Production) database for OLTP

and segregates batch reporting demands from live operations [3]. This study elucidates the

enhancement of ODB functionality [12] inside the Oracle ADG architecture, enabling

analytic tasks offloaded to the Standby database to execute with much improved speed. The

ODB-on-ADG architecture facilitates the independent scalability of both Primary and

Standby databases using Oracle Real Application Clusters (RAC), granting enterprise-scale

clients complete autonomy in augmenting their OLTP or read-only workloads [1-5].

76 | P a g e

Capacity Expansion Capability: When the In-Memory Column Store (IMCS) is setup for

both Primary and Standby databases, the data contained inside the IMCS of the two databases

may consist of entirely distinct sets of objects. This method efficiently enlarges the IMCS.

In a standard setup, clients can establish three services: Standby-only, Primary-only, and

Primary-and-Standby utilizing Oracle’s Services Infrastructure [7]. Figure 2 illustrates that

the most recent month of the SALES fact table data is stored in the Primary instance’s IMCS,

while the complete year's SALES data is retained in the Standby instance for analytical

purposes. The dimension tables may be loaded in both cases to enhance join processing

efficiency. For each partition of SALES data, the customer designates either the standby or

primary service, and for each dimension table, the client selects a service including both

primary and standby database instances. Customers may accomplish workload separation

with the IMCS capacity extension feature of the ODB-on-ADG architecture, therefore

benefiting from accelerated analytics for workloads executed on both instances [6-16].

The Oracle ADG's distinctive replication architecture required a redesign of essential

elements within the Oracle ODB infrastructure, particularly those responsible for populating

data in the IMCS and ensuring its transactional integrity. A significant issue in building the

ODB-on-ADG architecture was to preserve the primary advantage of ADG — its catastrophe

recoverability. The recoverability from disaster is contingent upon the rapidity with which

the Standby database can synchronize with the redo logs generated by the Primary database.

Consequently, the ODB-on-ADG infrastructure is engineered to impose minimal overhead

on the ADG architecture. The approach executes minimum processing on crucial pathways

and leverages the extensive parallelism utilized by the Oracle ADG architecture.

This article is structured as follows: Section II presents an introduction of Oracle ADG and

Database In-Memory; Section III elucidates the ODB-on-ADG architecture and the design

of its components; Section IV offers performance findings; and Section V finishes with a

discussion of future work.

An Overview of Oracle ADG and ODB Architectures

Summary of Oracle ADG Architecture

Oracle ADG offers active-standby replication for the Oracle Database. The replica, referred

to as the Standby database, is a synchronized, physical duplicate of the Primary database,

preserved by Redo Apply (also known as Media Recovery) [6].

Redo logs transmitted from the Primary database encompass redo records, which may be

produced by many Oracle database instances (utilizing Oracle RAC [9]). A redo record may

include numerous Redo Change Vectors (CVs), each corresponding to a specific database

block indicated by the Database Block Address (DBA). All CVs in a redo record are deemed

to have been produced at the identical SCN (System Change Number), which signifies the

database timestamp when alterations were executed on the database blocks. Every CV is

assigned a transaction identification. It is essential to recognize that the SCN linked to a redo

record may not correspond to the database time at which the transaction commits

77 | P a g e

(commitSCN). The commitSCN is, indeed, the SCN linked to a 'commit’ CV, which is

utilized for a certain block. In the Standby instance, a Log Merger procedure organizes the

redo data according to their SCN. The SCN-ordered logs may be utilized to apply to the

respective database blocks, therefore generating a physical replica of the underlying datafiles

on the Standby database. Upon the application of all CVs up to a certain SCN value, the

Standby database is deemed to have synchronized with the Primary database at that SCN.

This represents the most basic iteration of redo application [17-27].

Logs on the Primary database may be produced by several simultaneous transactions. The

serialization of log application to the Standby database can significantly impede redo

application, hence exacerbating the latency between the Primary and Standby databases.

This undermines the primary objective of the Standby Database – catastrophe recovery.

Consequently, the redo apply process is extensively parallelized for Oracle ADG by

allocating the SCN-ordered collection of CVs among recovery worker processes via a

hashing mechanism. Figure 3 illustrates the overarching architecture of Parallelized Redo

Apply. Each DBA is mapped to a specific recovery worker identification, enabling a

recovery worker process to autonomously process its allocated CVs and apply them to

database blocks in SCN order.

While parallelization accelerates redo application, it presents a possible issue of transactional

inconsistency. Due to the varying rates at which recovery workers may apply the change

vectors, the transactional sequence of modifications on the Standby database may be

disrupted. In Figure 3, recovery worker 1 continues to implement the CV from SCN 100, but

recovery worker N has advanced and is utilizing the CV from SCN 110, which incorporates

a modification to the database at a subsequent time. If the modifications to DBA 7 and DBA

150 constitute a single transaction, the alteration to DBA 150 must remain imperceptible to

queries until the modification to DBA 7 is likewise perceptible, in accordance with the

atomicity feature of transactions. A centralized coordinator must ensure awareness of the

implemented changes on the Standby database, leading us to the notion of QuerySCN in

Active Data Guard (ADG).

A recovery coordinator process monitors the advancement of all recovery worker processes

and sets a consistency point at which all workers have finalized the redo application. The

consistency point is identified as the 'QuerySCN' on ADG. The QuerySCN functions as the

Consistent Read (CR) snapshot for queries performed on the Standby database, until a more

recent consistency point (i.e., a higher QuerySCN) is created by the

Recovery Coordinator. Due to the varying speeds at which recovery worker processes apply

redo, the QuerySCN on ADG often exhibits leapfrogging rather than a continuous sequence

of successive SCNs.

Specific elements of the ODB-on-ADG architecture are intentionally placed to create a

uniform consistency point for the IMCS. This allows queries executed at the QuerySCN to

utilize the IMCS on the Standby Database. Section III examines these elements and their

positioning comprehensively [28-41].

78 | P a g e

Summary of Oracle Database

Row-stores are optimal for OLTP workloads, where transactions engage a limited number

of rows but several columns inside each row, whereas column stores are appropriate for

analytic workloads that often access a vast number of rows, but only a few columns per row.

Oracle ODB [12] implemented a dual-format architecture that preserves two versions of

identical data: the conventional row-format on-disk and a columnar format in the IMCS. The

ODB Transaction Manager maintains consistency between the column store and the current

transactional activities in the row store. Oracle ODB is therefore designed to accelerate

mixed-OLTP workloads that execute transaction processing and analytic queries.

The IMCS data consists of read-only In-Memory Columnar Units (IMCUs). IMCUs utilize

methods like as data compression and encoding to optimize the packing of the IMCS. The

In-Memory Scan Engine utilizes techniques like as SIMD vector processing, in-memory

storage indexes, and efficient predicate evaluation and aggregation to enhance the

performance of analytic queries. Data loading in the IMCS, referred to as Population, is often

executed as a background process and does not impact concurrent transactions and queries.

The population creates a snapshot SCN for each IMCU, and the IMCU is populated with

data that aligns with the snapshot SCN according to Oracle's Consistent Read (CR)

paradigm.

Upon loading, data in the IMCUs is synced with active transaction processing using specific

methodologies. A Snapshot Metadata Unit (SMU) is associated with each IMCU and

monitors the integrity of the data contained inside its related IMCU at many levels of

granularity: block level, row level, and column level. The In-Memory Scan Engine

synchronizes the IMCU data with the SMU to guarantee that incorrect or outdated data is

not retrieved from the IMCS, but rather from the database buffer cache (i.e., the row-store).

As transactions continue to alter the underlying row-store, an increasing proportion of the

data in an IMCU becomes invalid over time. The repopulation approach is utilized to update

the data in an IMCU with a more recent snapshot SCN, hence optimizing query speed when

scanning the IMCS. Repopulation, like to population, is entirely online, transparent to

queries and transactions interfacing with the IMCU, and is executed as a background process.

A collection of heuristics is employed to initiate repopulation and adjust the repopulation

frequency of each IMCU.

Besides ensuring consistency guarantees for data within IMCUs, SMUs facilitate

concurrency management and synchronize processes such as repopulation, scanning, and

removal of IMCUs. Figure 4 depicts a comprehensive overview of the ODB architecture,

highlighting access patterns for various components.

ODB-on-ADG Infrastructure

The Standby database does continuous redo application and generates consistency points

that ensure queries provide consistent results. The ODB-on-ADG architecture utilizes

specialized components to populate the IMCS and preserve its transactional consistency at

79 | P a g e

certain consistency points. Figure 5 illustrates the principal components of the ODB-on-

ADG system [42-53].

The ODB-on-ADG infrastructure engages with the QuerySCN progression on the Standby

database to get a consistent snapshot SCN for the IMCS population. Upon population, the

transactional consistency of the IMCS is kept via strategically located components:

The Mining Component leverages recovery workers to detect changes to items within the

IMCS. The metadata extracted by the Mining Component is stored in the In-Memory ADG

(IM-ADG) Journal. The Invalidation Flush Component transmits this metadata to SMUs

during QuerySCN progression, therefore rendering updated data in the IMCUs invalid.

Nuanced improvements to the previously described components enable ODB-on-ADG

architecture to expand effortlessly over ADG-RAC and accommodate schema modifications.

Moreover, specific redo generation may be utilized on the Primary database to maintain the

consistency of IMCS during ADG instance restarts. The subsequent subsections elucidate

the function and design of these components comprehensively.

Population of the IMCS on ADG

The IMCS population in the Standby database, like to that in the Primary database, is

engineered to remain entirely online and does not impede continuous queries on the IMCS.

A segment loader divides an object into data block ranges, while background population

worker processes create IMCUs for the DBA ranges. Queries and redo application on the

Standby continue uninterrupted throughout the populating of the IMCS.

In contrast to the Primary database, the Standby database disseminates distinct consistency

points that align with the QuerySCNs. Consequently, the snapshot SCN of an IMCU is

invariably the QuerySCN determined at that moment. This is crucial because the population

infrastructure may experience a transient state of the database if it selects a snapshot that is

not a consistency point. Synchronization is essential between the recovery coordinator

disseminating a fresh QuerySCN and the population infrastructure recording the snapshot

SCN. This is accomplished via the 'Quiesce Period' on the Standby Database. Prior to

publishing a new QuerySCN, the recovery coordinator acquires the 'Quiesce lock' to signify

the commencement of the Quiesce Period on the instance. The population infrastructure is

prohibited from capturing the snapshot SCN for IMCUs during the Quiesce Period. Upon

the publication of the new QuerySCN, the Quiesce Period concludes, allowing the

population infrastructure to acquire the snapshot SCN for IMCUs. Background procedures

inside the population infrastructure verify the conclusion of the Quiesce Period and maintain

the Quiesce lock while recording the snapshot SCN for an IMCU.

Upon populating the IMCUs in the Standby database instance, the query engine operating

on the Standby database—identical to that of the Primary database—can leverage all

optimizations and methodologies devised by the In-Memory Scan Engine to scan the IMCS,

thereby delivering exceptionally rapid query responses. The subsequent primary objective is

to maintain the IMCS on the Standby database in alignment with the consistency point or

80 | P a g e

QuerySCN being disseminated, ensuring that queries get the most current and consistent

results.

Mining Element

Recovery personnel on the Standby database (ADG) implement Redo Change Vectors (CVs)

to the foundational data blocks. The ODB-on-ADG Mining Component leverages the

recovery workers to detect each CV. When the CV alters an object designated for loading in

the IMCS on the Standby database, a tuple comprising the Object Identifier, Data Block

Identifier (DBA), and the list of modified rows inside the data block is recorded in the IM-

ADG Journal. Given that ODB-on-ADG operates with Oracle Database facilitating multi-

tenant applications, the tuple further comprises tenant information. Each tuple extracted from

analyzing a CV is referred to as a 'Invalidation Record' (refer to Figure 6). As modifications

to the data blocks are this tuple is tagged with its transaction identifier, ensuring atomicity at

transaction borders.

Besides extracting alterations to the data within the IMCS, ODB-on-ADG methods must also

extract certain control information. Every transaction possesses a distinct commit point, or

commitSCN, at which the alterations of a transaction are deemed atomic, persistent, and

accessible to queries in accordance with Oracle’s Consistent Read model. The IMCS on the

Standby database must also comply with these promises. Consequently, the ODB-on-ADG

Mining Component extracts control information regarding transactions – namely.

Transaction state transitions, including Transaction Begin, Prepare, Commit, and Abort,

along with the corresponding commitSCN for each transaction. Invalidation records are

linked to this control information via the Transaction Identifier.

One may naturally inquire, "Why cannot an invalidation record be promptly flushed to the

SMU following its construction?"The SMU must document this information to ensure

transactional consistency of the IMCUs. The rationale for postponing the flush is twofold.

Initially, because the populating of an IMCU occurs as a background process, independent

of the redo application, it is plausible that the corresponding SMU has not yet been

established. Secondly, even if the SMU is present, prematurely purging the invalidation

records results in the exposure of a transaction's alterations prior to its commitSCN.

Although this may appear to be a precautionary measure, certain processes are necessary to

ensure the SMU's persistence and retention of the invalidation information until the

QuerySCN on Standby aligns with the transaction's commitSCN. Given that population and

repopulation occur in the background in an entirely online fashion, it is exceedingly

challenging to offer such assurances.

To avert these occurrences, ODB-on-ADG protocols save invalidation entries in a 'IM-ADG

Journal' and thereafter transmit them to the SMUs at an ideal juncture.

IM-ADG Journal to Cache the Invalidation Records

The IM-ADG Journal enables the documentation and storage of invalidation entries

extracted by the ODB-on-ADG Mining Component. The IM-ADG Journal is intended to

81 | P a g e

operate in conjunction with the massively parallel redo apply, while preserving the principle

that modifications must be atomic at transaction borders.

The fundamental architecture of the IM-ADG Journal comprises an in-memory hash table

that associates a transaction identifier with its invalidation data. The hash table is

dimensioned according to the degree of parallelism utilized by the ADG design to minimize

conflict among the recovery worker processes.

Nevertheless, with an exceedingly high transaction throughput on the Primary database,

some chaining in the hash buckets may be observed. The resultant hash chains are

safeguarded by a 'bucket lock' to synchronize several recovery worker processes functioning

on the same hash bucket. Figure 7 illustrates the overarching architecture of the IM-ADG

Journal.

Each hashbucket has hashtable nodes that function as the anchor for invalidation records

originating from a transaction. It is crucial to uphold transaction atomicity guarantees—

either all modifications of a transaction must be accessible to a query, or none should be.

Upon the creation of an anchor node for a transaction, each recovery worker is allocated a

designated section within the anchor node to store the invalidation records it generates. This

eliminates the necessity for synchronization among several recovery workers processing

invalidation records for a transaction, which is a frequent occurrence. Figure 7 illustrates the

storage of mined invalidation entries for transactions T1 and T2 within the IM-ADG Journal.

T3 now lacks invalidation records; nonetheless, the anchor node would have been

established upon the mining of the matching 'transaction begin' (control operation) by a

recovery worker.

Advancement of QuerySCN and Invalidation Flush to SMU

When the Standby database is prepared to progress the QuerySCN to establish a more recent

consistency point, the invalidation records collected in the IM-ADG Journal must be

transmitted to the SMUs, but only if the transaction that generated those changes has a

commitSCN that is less than or equal to the new QuerySCN. The IM-ADG Journal maintains

distinct invalidation entries for each transaction, rendering this procedure straightforward.

Nonetheless, a transaction may alter data across several IMCUs, necessitating the mapping

of invalidation records to the relevant SMUs to facilitate a cost-effective flush operation.

The Invalidation Flush Component does this by categorizing the invalidation data into

'Invalidation groups.' The recovery coordinator progressing the QuerySCN purges the

invalidation groups to pertinent SMUs prior to disseminating the updated QuerySCN.

Consequently, any queries executed at the new QuerySCN will render the associated data in

the IMCU invalid.

Although this appears to be a simple procedure, it can result in considerable lag in publishing

the new QuerySCN if the recovery coordinator does this task independently and sequentially.

As stated in Section IIA, the Primary database produces logs in a multi-threaded fashion,

executing hundreds of transactions per second, resulting in a rapid advancement of the SCN

82 | P a g e

on the Primary database. Consequently, the Standby database must rapidly elevate the

consistency point to ever higher QuerySCNs. Any delay in creating the QuerySCN

jeopardizes the Standby database's synchronization, hence compromising its failover

capabilities. The Invalidation Flush is therefore on the critical path, making the optimization

of this procedure essential.

The ODB-on-ADG architecture utilizes two primary methods to minimize the latency of

Invalidation Flush during QuerySCN progression. A assistance structure known as the 'IM-

ADG Commit Table' is established to facilitate rapid access to the IM-ADG Journal.

Secondly, the recovery personnel are reassigned to execute a highly parallelized,

collaborative flushing operation.

The ODB-on-ADG Mining Component preserves an in-memory, ordered linked list of

transaction IDs and their corresponding commit SCN in the IM-ADG Commit Table. When

specific control information on a transaction is extracted – namely. A 'Commit Table node'

is generated during a transaction commit or transaction preparation. The Commit Table node

includes the transaction identification and associated commitSCN, and is added into the

linked list, which is organized by commitSCN. The Commit Table node directly references

the anchor node in the IM-ADG Journal, which holds the transaction's invalidation entries.

When a new consistency point must be established, the ODB-on-ADG Invalidation Flush

Component utilizes the recovery coordinator process to truncate the Commit Table and

generate a Worklink (refer to Figure 8). All nodes in the worklink include transaction IDs

for transactions that must be 'flushed' to the SMUs prior to the publication of the new

consistency point. The Invalidation Flush Component does this by securing direct access to

the IM-ADG Journal anchor node via the worklink. It collects all invalidation records for

each transaction, organizes them into invalidation groups according to the DBA ranges for

IMCUs, and transmits them to the corresponding SMUs.

To mitigate the bottleneck of insertion into a singular, sorted linked list by the Mining

Component, the IM-ADG Commit Table may be partitioned to generate numerous sorted

linked lists. A worklink is generated for each sorted list during the progress of QuerySCN.

Collaborative Flush:

Once the worklink is established, the invalidation records for various transactions inside the

worklink may be parallelized with ease. The ODB-on-ADG Invalidation Flush Component

employs recovery workers to facilitate this process, executing a 'Cooperative Flush.'

Moreover, recovery personnel

During the execution of the redo apply task, periodically verify the creation of a worklink.

If a worklink exists, the recovery workers assist the recovery coordinator in flushing a batch

of nodes from the worklink prior to proceeding with redo application. The recovery

83 | P a g e

coordinator establishes the worklink, monitors its advancement, and disseminates the target

QuerySCN as the new consistency point when the worklink has been depleted.

Specialized Redo Generation in the Primary Database

The Primary database remains largely indifferent to the existence of the IMCS on the

Standby database, so no additional overheads are incurred when a transaction produces CVs

to alter data on the Primary database. Nonetheless, an exception exists to this rule. Special

redo generation may be executed on the Primary database by annotating the Commit Record

of a transaction with a flag that signifies if the transaction altered any object designated for

inclusion in the IMCS. This paragraph elucidates the utilization of this flag inside the ODB-

on-ADG infrastructure.

The redo application on ADG is entirely independent of the Primary database. The database

administrator may enable or disable redo apply on ADG and can arbitrarily shut down and

restart the Standby database instances. ADG procedures retain sufficient state to facilitate

recovery in such instances. Nevertheless, due to the IMCS lacking a permanent footprint

aside from the foundational row-store objects, ODB-on-ADG components forfeit all their

state upon instance restart. A transaction may be partially mined during a recovery session,

after which the Standby database instance can be shut down and restarted, with the

transaction commit information subsequently mined in a later session. If the commit SCN of

the transaction exceeds the snapshot SCN of an IMCU, the invalidation records of the

transaction must be sent to the corresponding SMU. The Commit Record of the transaction

contains a flag to signify if any invalidation records are anticipated for this transaction. If

they are, and the IM-ADG Journal contains none or just a partial set of invalidation data

(indicated by the absence of a 'transaction begin' control information record), the Invalidation

Flush Component employs a coarse invalidation technique to label all IMCUs for the

designated renter as 'invalid.' Designating an IMCU as invalid prevents queries from

accessing it until it is replenished.

Coarse invalidation causes considerable delay, but it occurs just when the Standby database

instance is restarted. Therefore, if the populating of the IMCS is delayed briefly upon

instance restart, we do not anticipate any coarse invalidation. It is important to acknowledge

that special redo generation is not strictly necessary. ODB-on-ADG may conservatively

presume that each transaction altered an object in the IMCS and initiate broad invalidation

upon the detection of a missing 'transaction begin'. Nonetheless, to ensure optimal query

speed, it is advisable to avoid initiating coarse invalidation.

Oracle Database on Oracle Data Guard with Real Application Clusters

Primary and Standby databases may be scaled autonomously with Oracle Real Application

Clusters (RAC). Oracle Database In-Memory effortlessly scales over RAC, with IMCUs

allocated across the IMCS on several Oracle RAC instances according to a hashing

algorithm. The allocation of IMCUs to instances is recorded in a home-location map [5].

84 | P a g e

The Redo Apply process on the Standby database is often confined to a singular master

instance, referred to as Single Instance Redo Apply (SIRA). A non-master instance does not

execute Redo apply; instead, it operates a local recovery coordinator process that gets the

QuerySCN from the master recovery coordinator and presents it to the queries handled by

that instance. Consequently, the IM-ADG Journal and IM-ADG Commit Table are

established solely on the master instance. During QuerySCN advancement, the ODB-on-

ADG Invalidation Flush Component queries the home-location map and transfers the

'invalidation groups' to the specified instance. The local recovery coordinator on the

receiving instance purges the invalidation groups to SMUs on that instance and confirms this

to the master. To mitigate network latency's effect on QuerySCN progression, the ODB-on-

ADG architecture utilizes batching and pipelined transmission of invalidation groups, as

messaging across the network might create a bottleneck.

Interaction of IMCS with Schema Modifications

Oracle Database accommodates many Data Definition Languages (DDL) at the levels of

table, partition, sub-partition, and column. DDL procedures often alter foundational schema

objects. Specific DDL operations in Oracle are executed solely at the data dictionary level,

resulting in no alterations to the underlying data blocks of the object. The In-Memory

database on the primary database is closely connected with these DDL processes. For

example, removing a column from a table in the IMCS eliminates the corresponding column

from all IMCUs for that table, rendering it inaccessible to queries.

ODB-on-ADG is not afforded this privilege. DDL statements are executed through redo

application on Active Data Guard. The ODB-on-ADG architecture consequently

incorporates redo markers in the redo logs as a reaction to DDL operations. Redo markers

resemble redo records but serve to denote alterations to non-persistent objects, namely the

IMCUs inside the IMCS. Redo markers are extracted via the ODB-on-ADG Mining

Component, and the information is stored in a distinct DDL Information Table, analogous

to the IM-ADG Commit Table. When forwarding the QuerySCN,

Assessment of Performance

This section will outline the primary advantages of activating ODB on Oracle ADG. The

performance enhancements of ODB for OLAP have been thoroughly evaluated in practical

corporate scenarios. Our performance assessment tests aim to illustrate the benefits of

utilizing Database In-Memory with Oracle ADG, while ensuring that the critical

functionalities of redo apply and catch-up capabilities of Oracle ADG, essential for disaster

recovery, remain uncompromised. We will examine two performance aspects: 1)

Accelerating analytic workloads on Oracle ADG amidst OLTP on the Primary database, and

2) Evaluating Redo Apply performance on an ODB-enabled Standby database with high-

throughput OLTP operating on the Primary database in a multi-tenant configuration on a 2-

node Oracle RAC.

Analytics Workloads on Standby with and Without ODB-on-ADG Infrastructure

85 | P a g e

This section assesses the acceleration of analytic workloads on Oracle ADG in conjunction

with OLTP on the Primary Database. In contemporary corporate entities, the capacity to

integrate transactional processing with rapid on-demand analytics of real-time operational

data is crucial for making informed business choices. Oracle ODB is a pioneering dual-

format database that delivers rapid in-memory analytical performance while enhancing

transactional processing. ODB-on-ADG enhances capabilities by offering isolation and

workload segmentation, while accelerating reporting tasks.

We introduce a synthetic workload operating in various modes and the consequent

improvement in scan response times for ad-hoc queries executing full table scans. All studies

were conducted on the Oracle Exadata Database Machine, a cutting-edge symmetric

multiprocessing server and storage cluster system.

The configuration comprises a synthetic OLTAP workload that emulates an insert/update

workload interleaved with queries. The test comprises a large table containing 6 million rows

and 101 columns, including 1 identity column, 50 numeric columns, and 50 varchar2

columns, with an index established on the identity column. The hardware configuration

consisted of dual Intel Xeon E5-2690 processors operating at 2.90GHz, each with 8 cores,

and 256GB of DRAM, of which just 60GB was allocated for the in-memory pool. The test

was conducted for one hour with a target throughput of 4000 operations per second. The

proportion of DMLs and analytical queries within the workload was adjustable. We exhibit

enhancements in performance for ad-hoc searches using full-table scans executed on the

Standby database, while the Primary concurrently manages a workload including various

DML activities. We utilize measures like as query response time and CPU utilization to

demonstrate the capabilities of the ODB-on-ADG system. A crucial aspect of the

configuration is to ensure that the Oracle database buffer cache is adequately sufficient to

prevent any physical I/O.

The achievement of the target throughput of 4000 ops/s is unattainable without ODB. There

is considerable backpressure since the configuration utilizes the same thread pool for

executing DMLs on the Primary database and queries on the Standby database. This results

in a decrease in throughput. Dedicated threads may be utilized to sustain throughput for Data

Manipulation Languages (DMLs).

1) Workload limited to updates

The update-only workload in the simulated OLTAP configuration generates 4000 operations

per second, including 1% scan operations (40 scans per second) on the Standby database,

while 70% updates (2800 updates per second) and 29% fetch operations via the index are

performed on the Primary Database instance. We analyze the response times of queries Q1

and Q2 on the Standby Database, both with and without ODB-on-ADG. Figure 9 illustrates

that the response time has enhanced by about 100-fold for the sample queries.

The expedited scans render the Standby a feasible option for task isolation while also

decreasing CPU use on the Primary. In Update-only workloads, CPU utilization on the

86 | P a g e

Primary Database decreases from 11.7% when all activities are executed on the Primary to

4.7% when scans are delegated to the Standby Database. The CPU use of the Standby

Database rises from 2% to 17%, with the disproportionate increase attributed to its

architectural divergence from the Primary Database.

Update and Insert workload

The Update and Insert workload sustain table scans at 1% on the Standby Database, with a

throughput of 4000 operations per second. It performs 25% inserts, 40% updates to the

primary database, with the remainder consisting of index-based retrievals. Figure 10

juxtaposes the response times for Q1 and Q2 on the Standby database, both with and without

ODB-on-ADG.

The use of ODB-on-ADG markedly enhances the performance of the Standby database,

resulting in a nearly tenfold reduction in response time. However, the query response times

pertain solely to the original table data. It is important to recognize that with inserts, the

population infrastructure must employ much more CPU resources to integrate the newly

entered data into the IMCS. The extensive concurrent invalidation and population activities

on the edge IMCU related to new inserts result in a restricted performance advantage of the

IMCS.

Comparison of Read-only Analytic Workloads on Primary and Standby Databases

This experiment demonstrates that the Primary and Standby databases exhibit equivalent

performance under a scan-only demand.

A workload devoid of DMLs is executed independently on both the Primary and Standby

databases. This indicates that searches for a specific data subset (e.g., a partition) devoid of

DML activity may be effortlessly offloaded to the Standby, entirely transparent to the end-

user.

The scan-only workload employs the identical simulated OLTAP configuration as

subsection IVA, executing 4000 operations per second, including 25% ad-hoc queries doing

full-table scans (1000 scans per second) and 75% fetch queries utilizing the index. Table 2

juxtaposes the response time for Q1 on the Primary and Standby databases with ODB

activated on both.

Moreover, there is a direct transference of CPU use from the Primary to the Standby database

instance—while the Primary's CPU usage diminishes from 8% to 0.5%, the Standby's CPU

escalates from 0.3% to 7.9% during the execution of scans against the Standby database.

Execution of Redo Apply on the Standby Database

This experiment demonstrates that the ODB-on-ADG functionality does not substantially

influence Redo Apply on the Standby database. The QuerySCN advancement rate is

minimally impacted by the Invalidation Flush. The workload employed is a high-throughput

transaction workload including a mix of short, medium, and long-running transactions

87 | P a g e

executed on the primary database utilizing Oracle multi-tenant architecture. The Primary and

Standby databases are configured with 120 GB of DRAM.

The advancement of the redo log archiving on the Primary database operating with two

Oracle RAC Instances (pri_log, pri_log2) for a duration of two hours. The archived redo is

transmitted to the Standby database, and the status of the redo log application on the Standby

database RAC instances 1 and 2, with the ODB-on-ADG feature on, is illustrated in the

figure (std_log1, std_log2). The log catchup is very fast, and the Standby database exhibits

negligible latency, despite the overheads caused by the ODB-on-ADG architecture.

Conclusions

Oracle Active Data Guard is a distinctive architecture that facilitates query execution on a

Standby database, whilst functioning as a disaster recovery solution. The ODB-on-ADG

infrastructure allows queries performed on the Standby Database to use ODB advantages,

significantly enhancing the response time of certain queries. ODB-on-ADG utilizes the

highly parallelized architecture of ADG Recovery to synchronize the In-Memory Column

Store on the Standby database with ongoing transactional activities on the Primary database,

while guaranteeing the integrity of the Standby database stays dedicated to its objective of

catastrophe recoverability. The extension of Database In-Memory capabilities to the Standby

database allows customers to optimize their read-write and read-only workloads by

segregating them across the Primary and Standby Databases, hence facilitating accelerated

analytics for both types of workloads.

Activating ODB on the Standby database has granted access to several functionality offered

by ODB. In-Memory Expressions [1] are now enabled on the Standby database, delivering

enhanced performance for intricate analytical expressions utilized in reporting queries,

including JSON processing. In-Memory Join Groups may also be established for the Standby

database to expedite join processing. External data sources, such as Hadoop, can be utilized

for population in the IMCS with the In-Memory External Tables functionality [7]. The

innovative formats and techniques employed by ODB, like as in-memory storage indexes

and aggregation push-down, are smoothly integrated into ADG, so enhancing the Standby

database for real-time analytics processing.

References

[1] Joshi, D., Sayed, F., Jain, H., Beri, J., Bandi, Y., & Karamchandani, S. A Cloud Native

Machine Learning based Approach for Detection and Impact of Cyclone and Hurricanes

on Coastal Areas of Pacific and Atlantic Ocean.

[2] Agarwal, A. V., & Kumar, S. (2017, November). Unsupervised data responsive based

monitoring of fields. In 2017 International Conference on Inventive Computing and

Informatics (ICICI) (pp. 184-188). IEEE.

[3] Sai, K.M.V., M. Ramineni, M.V. Chowdary, and L. Deepthi. Data Hiding Scheme in

Quad Channel Images using Square Block Algorithm. in 2018 International Conference

on Advances in Computing, Communications and Informatics (ICACCI). 2018. IEEE.

88 | P a g e

[4] Manduva, V.C. (2020) AI-Powered Edge Computing for Environmental Monitoring: A

Cloud-Integrated Approach. The Computertech. 50-73.

[5] Tulli, S.K.C. (2023) An Analysis and Framework for Healthcare AI and Analytics

Applications. International Journal of Acta Informatica. 1: 43-52.

[6] Pasham, S.D. (2023) Application of AI in Biotechnologies: A systematic review of main

trends. International Journal of Acta Informatica. 2: 92-104.

[7] Manduva, V.C. (2020) How Artificial Intelligence Is Transformation Cloud Computing:

Unlocking Possibilities for Businesses. International Journal of Modern Computing.

3(1): 1-22.

[8] Sakr, S., Liu, A., & Xie, M. (2020). Change data capture for scalable data migration.

ACM Transactions on Database Systems, 45(3), 1-27.

[9] Tulli, S.K.C. (2023) Analysis of the Effects of Artificial Intelligence (AI) Technology

on the Healthcare Sector: A Critical Examination of Both Perspectives. International

Journal of Social Trends. 1(1): 112-127.

[10] Pasham, S.D. (2022) A Review of the Literature on the Subject of Ethical and Risk

Considerations in the Context of Fast AI Development. International Journal of Modern

Computing. 5(1): 24-43.

[11] Pasham, S.D. (2022) Enabling Students to Thrive in the AI Era. International Journal of

Acta Informatica. 1(1): 31-40.

[12] Tulli, S.K.C. (2023) Utilisation of Artificial Intelligence in Healthcare Opportunities

and Obstacles. The Metascience. 1(1): 81-92.

[13] Tulli, S.K.C. (2023) Warehouse Layout Optimization: Techniques for Improved Order

Fulfillment Efficiency. International Journal of Acta Informatica. 2(1): 138-168.

[14] Manduva, V.C. (2020) The Convergence of Artificial Intelligence, Cloud Computing,

and Edge Computing: Transforming the Tech Landscape. The Computertech. 1-24.

[15] Manduva, V.C. (2021) AI-Driven Predictive Analytics for Optimizing Resource

Utilization in Edge-Cloud Data Centers. The Computertech. 21-37.

[16] Pasham, S.D. (2017) AI-Driven Cloud Cost Optimization for Small and Medium

Enterprises (SMEs). The Computertech. 1-24.

[17] Pasham, S.D. (2018) Dynamic Resource Provisioning in Cloud Environments Using

Predictive Analytics. The Computertech. 1-28.

[18] Manduva, V.C. (2021) Exploring the Role of Edge-AI in Autonomous Vehicle

Decision-Making: A Case Study in Traffic Management. International Journal of

Modern Computing. 4(1): 69-93.

[19] Memon, S., Bhatti, S., & Ali, A. (2019). Automated data migration strategies for

enterprises. Future Generation Computer Systems, 91, 117-130.

[20] Manduva, V.C. (2021) Optimizing AI Workflows: The Synergy of Cloud Computing

and Edge Devices. International Journal of Modern Computing. 4(1): 50-68.

[21] Manduva, V.C. (2021) Security Considerations in AI, Cloud Computing, and Edge

Ecosystems. The Computertech. 37-60.

[22] Palanisamy, S., & Liu, L. (2019). Efficient privacy-preserving data masking for cloud-

based machine learning applications. IEEE Transactions on Services Computing, 12(3),

89 | P a g e

444-457.

[23] Manduva, V.C. (2021) The Role of Cloud Computing In Driving Digitals

Transformation. The Computertech. 18-36.

[24] Manduva, V.C. (2022) AI Inference Optimization: Bridging the Gap Between Cloud

and Edge Processing. International Journal of Emerging Trends in Science and

Technology. 1-15.

[25] Sen, A., & Sinha, S. (2020). Backup and rollback mechanisms for secure data migration

in enterprises. Journal of Cyber Security and Mobility, 9(4), 369-392

[26] Manduva, V.C. (2022) Blockchain for Secure AI Development in Cloud and Edge

Environments. The Computertech. 13-37.

[27] Manduva, V.C. (2022) Multi-Agent Reinforcement Learning for Efficient Task

Scheduling in Edge-Cloud Systems. International Journal of Modern Computing. 5(1):

108-129.

[28] Manduva, V.C. (2022) Security and Privacy Challenges in AI-Enabled Edge

Computing: A Zero-Trust Approach. International Journal of Acta Informatica. 1(1):

159-179.

[29] Pasham, S.D. (2021) Graph-Based Models for Multi-Tenant Security in Cloud

Computing. International Journal of Modern Computing. 4(1): 1-28.

[30] Pasham, S.D. (2022) Graph-Based Algorithms for Optimizing Data Flow in Distributed

Cloud Architectures. International Journal of Acta Informatica. 1(1): 67-95.

[31] Pasham, S.D. (2023) Privacy-preserving data sharing in big data analytics: A distributed

computing approach. The Metascience. 1(1): 149-184.

[32] Manduva, V.C. (2022) The Role of Agile Methodologies in Enhancing Product

Development Efficiency. International Journal of Acta Informatica. 1(1): 138-158.

[33] Manduva, V.C. (2023) Artificial Intelligence, Cloud Computing: The Role of AI in

Enhancing Cyber security. International Journal of Acta Informatica. 2(1): 196-208.

[34] Manduva, V.C. (2023) Unlocking Growth Potential at the Intersection of AI, Robotics,

and Synthetic Biology. International Journal of Modern Computing. 6(1): 53-63.

[35] Manduva, V.C. (2023) Artificial Intelligence and Electronic Health Records (HER)

System. International Journal of Acta Informatica. 1: 116-128.

[36] Pasham, S.D. (2019) Energy-Efficient Task Scheduling in Distributed Edge Networks

Using Reinforcement Learning. The Computertech. 1-23.

[37] Pasham, S.D. (2020) Fault-Tolerant Distributed Computing for Real-Time Applications

in Critical Systems. The Computertech. 1-29.

[38] Pasham, S.D. (2023) Enhancing Cancer Management and Drug Discovery with the Use

of AI and ML: A Comprehensive Review. International Journal of Modern Computing.

6(1): 27-40.

[39] Tulli, S.K.C. (2023) Enhancing Marketing, Sales, Innovation, and Financial

Management Through Machine Learning. International Journal of Modern Computing.

6(1): 41-52.

[40] Manduva, V.C. (2023) Model Compression Techniques for Seamless Cloud-to-Edge AI

Development. The Metascience. 1(1): 239-261.

90 | P a g e

[41] Manduva, V.C. (2023) Scalable AI Pipelines in Edge-Cloud Environments: Challenges

and Solutions for Big Data Processing. International Journal of Acta Informatica. 2(1):

209-227.

[42] Manduva, V.C. (2023) The Rise of Platform Products: Strategies for Success in Multi-

Sided Markets. The Computertech. 1-27.

[43] Tulli, S.K.C. (2023) Application of Artificial Intelligence in Pharmaceutical and

Biotechnologies: A Systematic Literature Review. International Journal of Acta

Informatica. 1: 105-115.

[44] Pasham, S.D. (2023) The function of artificial intelligence in healthcare: a systematic

literature review. International Journal of Acta Informatica. 1: 32-42.

[45] Pasham, S.D. (2023) An Overview of Medical Artificial Intelligence Research in

Artificial Intelligence-Assisted Medicine. International Journal of Social Trends. 1(1):

92-111.

[46] Pasham, S.D. (2023) Network Topology Optimization in Cloud Systems Using

Advanced Graph Coloring Algorithms. The Metascience. 1(1): 122-148.

[47] Tulli, S.K.C. (2022) Technologies that Support Pavement Management Decisions

Through the Use of Artificial Intelligence. International Journal of Modern Computing.

5(1): 44-60.

[48] Manduva, V.C.M. (2022) Leveraging AI, ML, and DL for Innovative Business

Strategies: A Comprehensive Exploration. International Journal of Modern Computing.

5(1): 62-77.

[49] Manduva, V.C. (2023) AI-Driven Edge Computing in the Cloud Era: Challenges and

Opportunities. International Journal of Modern Computing. 6(1): 64-95.

[50] Tulli, S.K.C. (2022) An Evaluation of AI in the Classroom. International Journal of

Acta Informatica. 1(1): 41-66.

[51] Pasham, S.D. (2023) Opportunities and Difficulties of Artificial Intelligence in

Medicine Existing Applications, Emerging Issues, and Solutions. The Metascience.

1(1): 67-80.

[52] Pasham, S.D. (2023) Optimizing Blockchain Scalability: A Distributed Computing

Perspective. The Metascience. 1(1): 185-214.

[53] Tulli, S.K.C. (2023) The Role of Oracle NetSuite WMS in Streamlining Order

Fulfillment Processes. International Journal of Acta Informatica. 2(1): 169-195.

