(An International Peer Review Journal)

YOLUME 8; ISSUE 1 (JAN-JUNE); (2022)

WEBSITE: THE COMPUTERTECH

Managing Risk in Medical Software: A Quality Assurance Framework for Healthcare Technology

Noone Srinivas^{1*}, Nagaraj Mandaloju², Siddhartha Varma Nadimpalli³

1Senior Quality Engineer, American Express 2Senior Salesforce Developer 3Sr Cybersecurity Engineer, Moody's Corporation

Abstract

The integration of technology in healthcare has revolutionized patient care and operational efficiency, but it also introduces significant risks associated with medical software. Effective risk management is essential in the quality assurance (QA) process for these systems, given the potential implications for patient safety and data security. This paper explores the critical importance of risk management in medical software, presenting a structured framework for identifying, assessing, and mitigating risks throughout the software development lifecycle (SDLC). The framework incorporates advanced testing techniques, adherence to regulatory standards, and continuous monitoring to enhance the safety, security, and reliability of medical software systems. It underscores the necessity of robust risk management strategies that protect patient data, ensure system functionality, and facilitate high-quality care delivery. By establishing clear protocols for risk assessment and management, healthcare organizations can foster stakeholder confidence and improve overall healthcare outcomes. Ultimately, this manuscript aims to equip healthcare technology developers and quality assurance professionals with the knowledge needed to navigate the complexities of medical software while prioritizing patient safety and regulatory compliance.

Keywords: Medical Software, Assurance, Framework, Healthcare Technology.

Introduction

As healthcare increasingly relies on software solutions, the complexities involved in developing and maintaining medical software systems have grown significantly. These systems, which range from electronic health records (EHR) to clinical decision support systems, are vital for ensuring patient safety and effective care delivery. However, with increased reliance on technology comes the risk of software failures, security breaches, and compliance issues that can jeopardize patient safety and data integrity. To address these challenges, integrating risk management into the quality assurance process is paramount. Risk management in medical software involves a systematic approach to identifying potential hazards, evaluating their impact, and implementing strategies to mitigate risks throughout the software development lifecycle (SDLC). This proactive stance not only helps safeguard patient welfare but also ensures adherence to regulatory standards established by authorities such as the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). The proposed framework for managing risk encompasses several essential components. It emphasizes the use of advanced testing techniques, such as automated testing, stress testing, and usability testing, to evaluate software performance in various scenarios. By rigorously assessing software under realistic conditions, developers can identify vulnerabilities early in the development process. Additionally, the framework advocates for continuous monitoring of medical

(An International Peer Review Journal)

software systems post-deployment. This ongoing oversight enables organizations to detect emerging risks, assess software performance, and implement necessary updates or interventions swiftly. By fostering a culture of continuous improvement and responsiveness, healthcare organizations can ensure their systems remain safe and effective throughout their lifecycle. Moreover, effective risk management strategies are vital for protecting patient data, ensuring system functionality, and maintaining the quality of care. The collaboration of stakeholders, including developers, healthcare providers, and regulatory bodies, is essential to create a cohesive approach to risk management. By prioritizing risk throughout the development and deployment phases, organizations can enhance stakeholder confidence and ultimately improve patient outcomes. In this paper, we will delve deeper into the components of a quality assurance framework for medical software, outlining best practices for risk management and discussing the implications of these practices on healthcare technology. By equipping stakeholders with the tools and knowledge necessary for effective risk management, we aim to contribute to the safe, reliable, and efficient delivery of healthcare technology.

Tables

Table 1: Key Components of Risk Management in Medical Software

Component	Description	Importance
Risk Identification	Process of identifying potential risks	Early detection of hazards
Risk Assessment	Evaluating the likelihood and impact of	Informed decision-making
	risks	
Risk Mitigation	Implementing strategies to reduce risks	Enhances safety and
		reliability
Continuous	Ongoing assessment of	Timely response to issues
Monitoring	software performance	
Regulatory	Adherence to standards set by regulatory	Ensures legal and safety
Compliance	bodies	standards

Table 2: Advanced Testing Techniques in Medical Software

Technique	Description	Benefits
Automated	Using scripts to execute tests without human	Increases efficiency
Testing	intervention	and coverage
Stress Testing	Evaluating software performance under extreme conditions	Identifies breaking points
Usability	Assessing user experience and interaction	Enhances user satisfaction
Testing		
Security Testing	Identifying vulnerabilities and threats	Protects patient data
Performance	Measuring system responsiveness and stability	Ensures reliability in use
Testing		

Table 3: Regulatory Standards for Medical Software

Standard Description Applicability

FDA 21 CFR Part		for medical	U.S. medical software
820	devices		
ISO 13485	International standard	for quality	Global medical devices
	management systems		
IEC 62304	Standards for software lifecy	cle processes	Software used in medical
			devices
HIPAA	Regulation for prote	ecting patient	Healthcare software
	health information		
CE Marking	Certification for products	sold in the	European medical software
	European market		_

Table 4: Risk Assessment Matrix

Risk Level	Likelihood	Impact	Risk Category	Action Required
Low	Rare	Minor	Acceptable	Monitor
Moderate	Possible	Moderate	Manage	Implement controls
High	Likely	Major	Mitigate	Immediate corrective actions
Critical	Almost certain	Catastrophic	Avoid	Cease operations or redesign

Table 5: Risk Mitigation Strategies

Strategy	Description	Examples
Design Controls	Implementing safety features during	Fail-safes, redundancies
	development	
Training Programs	Educating staff on risk management	Workshops, e-learning courses
	practices	
Regular Audits	Conducting periodic evaluations	Compliance checks,
	of software	performance reviews
Incident Response	Preparing for potential failures	Established protocols, drills
Plans		
Continuous	Ongoing refinement of processes and	Feedback loops, iterative testing
Improvement	tools	

Table 6: Key Stakeholders in Medical Software Development

Stakeholder	Role	Responsibilities
Software Developers	Build and maintain software	Design, coding, testing
Quality Assurance	Ensure software meets	Testing, documentation,
Professionals	quality standards	compliance
Regulatory Bodies	Oversee compliance with laws and	Approval, monitoring,
	regulations	guidance
Healthcare Providers	Use the software in clinical settings	Patient care, feedback
Patients	End-users of healthcare technology	Safety, satisfaction

Table 7: Benefits of Continuous Monitoring

Benefit	Description	Impact
Early Detection	Identifying issues before they escalate	Reduces risk of failure
Improved Compliance	Ensuring ongoing adherence to regulations	Maintains legal standing
Enhanced Performance	Monitoring software effectiveness over time	Sustains high-quality care
User Feedback	Collecting insights from end-users	Informs updates and improvements
Data Security	Protecting sensitive information continuously	Safeguards patient data

Table 8: Challenges in Risk Management for Medical Software

Challenge	Description	Solutions
Complexity	Intricacies of software systems	Simplify processes, use tools
Regulatory Changes	Adapting to evolving standards	Stay updated, conduct training
	T: ', 1,' 1 1 1 , C : 1	D: '/' 1: 1 : /
Resource	8	Prioritize high-impact areas
Constraints	management	
Cultural	Reluctance to adopt new practices	Foster a culture of safety
Resistance		
Integration Issues	Difficulties in aligning tools	Comprehensive planning and
	and processes	testing

Table 9: Software Development Lifecycle Stages

Stage	Activities	Key Deliverables
Requirements	Gathering and analyzing user needs	Requirement specifications
Design	Architectural and detailed design	Design documents
Development	Coding and unit testing	Functional software
		modules
Testing	Integration, system, and acceptance testing	Test reports
Deployment	Implementing the software in a live environment	Deployed software
Maintenance	Ongoing support and updates	Maintenance logs

Table 10: Common Risks in Medical Software Development

Risk	Description	Mitigation Strategies
Software	Errors in the code that	Rigorous testing and debugging
Bugs	affect functionality	
Data Breaches	Unauthorized access to patient data	Strong encryption and access controls
Non-	Failure to meet regulatory	Regular audits and compliance checks
compliance	requirements	
User Errors	Mistakes made by users	Comprehensive training and user
	during operation	support

(An International Peer Review Journal)

System	Breakdowns in software functionality	Robust design and testing protocols
Failures		

Table 11: Risk Communication Strategies

Strategy	Description	Purpose
Regular Updates	Providing stakeholders with	Ensures awareness of risks
	consistent information	
Risk Reporting	Formal documentation of identified risks	Promotes transparency
Stakeholder	Gathering key individuals to discuss risks	Collaborative problem-
Meetings		solving
Training Sessions	Educating staff on risk	Builds capacity and
	management processes	knowledge
Feedback		Encourages proactive
Mechanisms	Channels for receiving input on risks	engagement

Table 12: Best Practices for Quality Assurance in Medical Software

Practice	Description	Benefits
Comprehensive	Ensuring all aspects of the software are	Higher quality and
Testing	tested	reliability
Documentation	Keeping detailed records of processes	Clarity and accountability
	and changes	
Stakeholder	Engaging all relevant parties in the QA	Better outcomes and
Involvement	process	collaboration
Use of Standards	Adhering to established QA frameworks	Consistency and reliability
Training and	Ongoing education for QA teams	Enhanced skills and
Development		performance

Table 13: Key Metrics for Measuring Software Quality

Metric	Description	Importance
Defect Density	Number of defects per unit of software	Indicates quality level
Test Coverage	Percentage of requirements covered by tests	Assesses thoroughness
Mean Time to	Average time until failure occurs	Reflects reliability
Failure		
User Satisfaction	Feedback from users regarding	Measures effectiveness
	software usability	
Compliance Rate	Percentage of adherence to regulatory	Ensures safety and
	standards	legality

Table 14: Technologies Supporting Medical Software Risk Management

Technology	Application	Benefits
Automated Testing	Streamlining the testing process	Increases efficiency and accuracy

Machine	Predicting potential risks based on data	Enhances proactive risk
Learning		management
Cloud	Facilitating data storage and access	Supports scalability and security
Computing		
Blockchain	Securing patient data and	Enhances data protection
	ensuring integrity	_
Analytics Tools	Monitoring software performance and	Informs risk assessment
	usage	

Table 15: Elements of a Risk Management Plan

Element	Description	Purpose
Risk Assessment	Evaluating potential risks	Informs mitigation strategies
Risk Register	Documenting identified risks and their status	Maintains oversight
Communication Plan	Strategies for informing stakeholders	Ensures awareness
Mitigation Measures	Actions taken to reduce risks	Enhances safety
Review Process	Periodic evaluation of the risk management plan	Promotes continuous improvement

Table 16: Common Compliance Challenges in Medical Software

Challenge	Description	Strategies for Mitigation
Evolving	Keeping up with changes in laws	Regular training and updates
Regulations	and standards	
Documentation	Incomplete records of processes	Implementing comprehensive
Gaps	and decisions	documentation practices
Audit	Being ready for regulatory audits	Conducting mock audits
Preparedness		
Data Security	Protecting sensitive information	Strong cybersecurity measures
User Compliance	Ensuring users follow protocols	
	and standards	Regular training and reminders

Table 17: Risk Management Lifecycle

Phase	Activities	Deliverables
Planning	Establishing risk management objectives	Risk management plan
Identification	Identifying potential risks	Risk register
Analysis	Assessing risks in terms of likelihood and impact	Risk assessment report
Response	Developing strategies to manage risks	Mitigation plans
Monitoring	Ongoing assessment of risks and responses	Monitoring reports

Table 18: Factors Influencing Risk in Medical Software

Factor	Description	Impact
Complexity	The intricacy of the software being	Increases potential for failure
	developed	
User Interaction	The way users interact with the	Affects usability and satisfaction
	software	
Regulatory	The landscape of applicable laws and	Determines compliance
Environment	regulations	requirements
Technological	The introduction of new	May create new risks or
Advances	technologies	opportunities
Development	The approach taken to develop	Impacts testing and quality
Methodology	software	assurance processes

Table 19: Tools for Risk Management in Medical Software

Tool	Purpose	Features
Risk Management	Streamlining risk assessment processes	Automated risk
Software		identification
Testing Tools	Conducting various types of tests	Comprehensive reporting
Compliance Checklists	Ensuring adherence to	Easy tracking and
	regulatory standards	documentation
Monitoring Systems	Real-time observation of	Alerts for anomalies
	software performance	
Data Encryption Tools	Protecting patient data	Enhanced security measures

Table 20: Future Trends in Risk Management for Medical Software

Trend	Description	Implications
AI in Risk	Utilizing artificial	Improved accuracy in risk
Assessment	intelligence to predict risks	identification
Enhanced Security	Developing more robust data	Greater patient data security
Protocols	protection measures	
Agile Methodologies	Adopting agile practices in software	Increased flexibility in managing
	development	risks
Integration of IoT	Managing risks associated	New challenges in data security
	with Internet of Things devices	and interoperability
User-Centric Design	Focusing on user needs and	Improved usability and reduced
	feedback in software design	errors

Table 21: Examples of Medical Software Risks

Risk Type	Description	Examples
Software Bugs	Flaws in the code that lead to	Crashes, incorrect calculations
	malfunction	
Security	Weaknesses that can be exploited by	Data breaches, unauthorized access
Vulnerabilities	attackers	

Compliance Issues		Incomplete documentation, audits
	requirements	
Usability	Challenges faced by end-users	Confusing interfaces, error-
Problems		prone processes
Integration	Difficulties in connecting with other	Incompatibility, data silos
Challenges	systems	

Table 22: Risk Management Roles and Responsibilities

Role	Responsibilities	Required Skills
Project Manager	Oversee risk management strategies	Leadership, communication
QA Specialist	Conduct testing and validate software	Analytical skills, attention to
	quality	detail
Regulatory Affairs	Ensure compliance with law	Knowledge of
Manager	and regulations	regulations, advocacy
Security Analyst	Identify and mitigate security risks	Cybersecurity expertise
Software Developer	Implement risk management practices	Programming skills, problem-
	in coding	solving

Table 23: Risk Management Best Practices

Best Practice	Description	Benefits
Regular Training	Continuous education on risk management	Enhances team
	techniques	competence
Cross-Functional	Involving diverse expertise in	Comprehensive risk
Teams	risk management	assessment
Root Cause	Investigating the underlying causes of risks	Prevents recurrence
Analysis		
	Developing strategies for potential risk	Improves preparedness
Scenario Planning	scenarios	
Continuous	Ongoing refinement of processes based on	Enhances overall quality
Improvement	feedback	

Table 24: Common Tools Used in Risk Management

Tool	Purpose	Features
JIRA	Issue and project tracking	Workflow management,
		reporting
RiskWatch	Risk assessment and management	Risk scoring, compliance
		tracking
Microsoft Excel	Data organization and analysis	Customizable risk matrices
Trello	Task management and project	Visual task tracking
	organization	
TestRail	Test case management	Test execution tracking, reporting

Table 25: Risk Assessment Techniques

Technique	Description	Use Cases
Qualitative Analysis	Subjective evaluation of risks	Early-stage risk
		identification
Quantitative Analysis	Statistical evaluation of risks	Detailed risk analysis
SWOT Analysis	Assessing strengths,	Strategic planning
	weaknesses, opportunities, threats	
FMEA (Failure Mode and	Identifying potential failure points	Product design and
Effects Analysis)	and their impacts	testing
Bowtie Analysis	Visual representation of risk	Comprehensive risk
	pathways and controls	visualization

Table 26: Impact of Technology on Risk Management

Technology	Impact on Risk Management	Challenges
Artificial	Enhances predictive analytics	Data quality and
Intelligence	forrisk identification	interpretability
Cloud Computing	Facilitates real-time monitoring and data	Compliance and security
	storage	concerns
Big Data	Enables analysis of large datasets for trends	Complexity in data
Analytics		management
Blockchain	Provides secure data handling and audit	Integration with
	trails	existing systems
Internet of Things	Increases data sources but adds	Security and interoperability
(IoT)	vulnerabilities	

Table 27: Financial Implications of Risk Management

Area	Potential Costs	Benefits
Compliance Fines	Costs associated with regulatory	Avoidance of legal penalties
	non- compliance	
Incident Response	Expenses related to handling data breaches	Protects reputation and trust
Software Failures	Costs from software malfunction or	Increased operational
	downtime	reliability
Training Programs	Investment in staff education	Enhanced team capabilities
	on risk management	1
Quality Assurance	Budget for testing and validation processes	Improved product quality

Table 28: Metrics for Monitoring Risk Management Effectiveness

Metric Description		Target Values
Number of	Number of Count of security or compliance incidents	
Incidents		
Compliance Rate	Percentage of compliance with regulations	100% compliance
User Satisfaction	Survey results regarding software usability	Above 85% satisfaction
Risk Mitigation	Rate of successfully mitigated risks	Increase year-over- year
Success		•

(An International Peer Review Journal)

Training	Percentage	of	staff	completing	risk	100% completion rate
Completion	management	t traiı	ning			

Table 29: User Feedback Mechanisms

Mechanism	Description	Purpose
Surveys	Gathering user opinions on software	Identifying usability issues
	usability	
Focus Groups	Group discussions to gather detailed	In-depth insights on
	feedback	user experience
Bug Reporting	Formalized processes for	Streamlines issue
Systems	reporting software issues	identification
Usability Testing	Observing real users interact with the	Direct feedback on
Sessions	software	design flaws
User Forums	Community platforms for	Enhances peer support and
	sharing experiences	feedback

Table 30: Future Challenges in Medical Software Risk Management

Challenge	Description	Potential Solutions
Rapid Technological	Keeping up with emerging	Continuous learning
Change	technologies	and adaptation
Increasing Regulations	Adapting to new laws and standards	Proactive compliance
		strategies
Cybersecurity Threats	Growing sophistication of cyber-	Enhanced security
	attacks	measures
Integration of New	Incorporating AI and IoT into existing	Comprehensive integration
Technologies	systems	plans
Patient Privacy	Ensuring data protection amid	Strong data governance
Concerns	increased digitalization	policies

Conclusion

Managing risk in medical software is an essential component of ensuring patient safety and maintaining high-quality healthcare delivery. As the healthcare landscape becomes increasingly complex, with the integration of advanced technologies and growing regulatory requirements, the need for a structured risk management framework is more critical than ever. This framework must encompass all stages of the software development lifecycle, from initial planning through post-deployment monitoring. The structured approach outlined in this paper emphasizes several key elements: the identification, assessment, and mitigation of risks through advanced testing techniques, compliance with regulatory standards, and continuous monitoring. These components work synergistically to detect vulnerabilities early in the development process, thereby enhancing the reliability and effectiveness of medical software solutions. By implementing robust risk management practices, healthcare organizations can ensure that they are not only compliant with regulations but also prioritizing patient safety and operational efficiency. Furthermore, fostering a culture of risk awareness across all levels of an organization is vital. It involves engaging stakeholders—including software developers, quality assurance professionals, healthcare

(An International Peer Review Journal)

providers, and patients—in discussions about risk management. This collaborative environment enhances communication and facilitates a shared understanding of risks, ultimately leading to better decision-making and outcomes. As technological advancements continue to reshape the healthcare landscape, organizations must remain vigilant and adaptable. The incorporation of emerging technologies such as artificial intelligence and machine learning can significantly enhance risk assessment capabilities, allowing for more proactive and predictive management of potential threats. Additionally, as the complexity of medical software increases, the integration of user-centric design principles will be essential for addressing usability issues and ensuring that software meets the needs of its users. a robust quality assurance framework that emphasizes risk management is critical for the successful deployment of medical software. By embracing effective risk management strategies, organizations can protect patient data, ensure system functionality, and maintain high standards of care delivery. This not only enhances patient outcomes but also builds trust among stakeholders and strengthens the overall integrity of healthcare systems. As we move forward, prioritizing risk management in medical software will be essential for navigating the challenges and opportunities presented by an ever-evolving digital health landscape.

References

- [1] Syed, Fayazoddin Mulla. "Ensuring HIPAA and GDPR Compliance Through Advanced IAM Analytics." *International Journal of Advanced Engineering Technologies and Innovations* 1, no. 2 (2018): 71-94.
- [2] Nersu, S. R. K., Kathram, S. R., & Mandaloju, N. (2020). Cybersecurity Challenges in Data Integration: A Case Study of ETL Pipelines. Revista de Inteligencia Artificial en Medicina, 11(1), 422-439.
- [3] Nersu, S. R. K., Kathram, S. R., & Mandaloju, N. (2021). Automation of ETL Processes Using AI: A Comparative Study. Revista de Inteligencia Artificial en Medicina, 12(1), 536-559.
- [4] Mandaloju, N. kumar Karne, V., Srinivas, N., & Nadimpalli, SV (2021). A Unified Approach to QA Automation in Salesforce Using AI, ML, and Cloud Computing. ESP Journal of Engineering & Technology Advancements (ESP-JETA), 1(2), 244-256.
- [5] Suvvari, S. K. (2020). Agile Risk Management: Strategies And Techniques For Mitigating Project Risks. Webology (ISSN: 1735-188X), 17(4).
- [6] Munagandla¹, V. B., Nersu, S. R. K., Kathram, S. R., & Pochu, S. (2019). Leveraging Data Integration to Assess and Improve Teaching Effectiveness in Higher Education. *Unique Endeavor in Business & Social Sciences*, 2(1), 1-13.
- [7] Munagandla¹, V. B., Pochu, S., Nersu, S. R. K., & Kathram, S. R. (2019). A Microservices Approach to Cloud Data Integration for Healthcare Applications. *Unique Endeavor in Business & Social Sciences*, 2(1), 14-29.
- [8] Nersu, S. R. K., Kathram, S. R., & Mandaloju, N. (2020). Cybersecurity Challenges in Data Integration: A Case Study of ETL Pipelines. *Revista de Inteligencia Artificial* en Medicina, 11(1), 422-439.
- [9] Kathram, S. R., & Nersu, S. R. K. (2020). Adopting CICD Pipelines in Project Management Bridging the Gap Between Development and Operations. Revista de Inteligencia Artificial en Medicina, 11(1), 440-461.
- [10] Munagandla¹, V. B., Nersu, S. R. K., Kathram, S. R., & Pochu, S. (2020). Student 360: Integrating and Analyzing Data for Enhanced Student Insights. *Unique Endeavor in Business & Social Sciences*, 3(1), 17-29.

- [11] Munagandla¹, V. B., Nersu, S. R. K., Pochu, S., & Kathram, S. R. (2020). Distributed Data Lake Architectures for Cloud-Based Big Data Integration. *Unique Endeavor in Business & Social Sciences*, 3(1), 1-16.
- [12] Nersu, S. R. K., Kathram, S. R., & Mandaloju, N. (2021). Automation of ETL Processes Using AI: A Comparative Study. *Revista de Inteligencia Artificial en Medicina*, 12(1), 536-559.
- [13] Pochu, S., Munagandla, V. B., Nersu, S. R. K., & Kathram, S. R. (2021). Multi-Source Data Integration Using AI for Pandemic Contact Tracing. *Unique Endeavor in Business & Social Sciences*, 4(1), 1-15.
- [14] Kathram, S. R., & Nersu, S. R. K. (2022). Effective Resource Allocation in Distributed Teams: Addressing the Challenges of Remote Project Management. Revista de Inteligencia Artificial en Medicina, 13(1), 615-634.
- [15] Kathram, S. R., & Nersu, S. R. K. (2022). Enhancing Software Security through Agile Methodologies and Continuous Integration. *Journal of Multidisciplinary Research*, 8(01), 26-37.
- [16] Pochu, S., & Nersu, S. R. K. (2022). Cybersecurity in the Era of Quantum Computing: Challenges and Solutions. *Journal of Multidisciplinary Research*, 8(01), 01-13.
- [17] Nersu, S. R. K., & Kathram, S. R. (2022). Harnessing Federated Learning for Secure Distributed ETL Pipelines. *Revista de Inteligencia Artificial en Medicina*, 13(1), 592-615
- [18] Ghali, A.A., S. Jamel, K.M. Mohamad, N.A. Yakub, and M.M. Deris. (2017) A review of iris recognition algorithms. JOIV: International Journal on Informatics Visualization. 1(4-2): 175-178.
- [19] Ghali, A.A., S. Jamel, Z.A. Pindar, A.H. Disina, and M.M. Daris. Reducing error rates for iris image using higher contrast in normalization process. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing.
- [20] Pindar, Z.A., S. Jamel, A. Disina, A.R. Ghali, and M.M. Deris. Check Digit System Based on Quasigroup String Transformation. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing.
- [21] Belanda, S.E., A.A. Ghali, S. Jamel, and M.M. Deris. A Two-Way Image Quality Enhancement for Iris Recognition System Using Modified Enhanced Histogram Equalization for Normalization. in 2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO). 2018. IEEE.
- [22] Ghali, A.A., S. Jamel, K.M. Mohamad, S.K.A. Khalid, Z.A. Pindar, and M.M. Deris. An improved low contrast image in normalization process for iris recognition system. in Recent Advances on Soft Computing and Data Mining: Proceedings of the Third International Conference on Soft Computing and Data Mining (SCDM 2018), Johor, Malaysia, February 06-07, 2018. 2018. Springer.
- [23] Aminu Ghali, A., R. Ahmad, and H.S.A. Alhussian. Comparative analysis of DoS and DDoS attacks in Internet of Things environment. in Artificial Intelligence and Bioinspired Computational Methods: Proceedings of the 9th Computer Science On-line Conference 2020, Vol. 2 9. 2020. Springer.
- [24] Ghali, A.A., R. Ahmad, and H. Alhussian. (2021) A framework for mitigating ddos and dos attacks in iot environment using hybrid approach. Electronics. 10(11): 1282.
- [25] Ghali, A.A., R. Ahmad, and H. Alhussian. A framework for enhancing network lifetime in Internet of things environment using clustering formation. in International Conference on Artificial Intelligence for Smart Community: AISC 2020, 17–18 December, Universiti Teknologi Petronas, Malaysia. 2022. Springer.